• Title/Summary/Keyword: Future climate change

Search Result 1,458, Processing Time 0.043 seconds

Predicting Future Terrestrial Vegetation Productivity Using PLS Regression (PLS 회귀분석을 이용한 미래 육상 식생의 생산성 예측)

  • CHOI, Chul-Hyun;PARK, Kyung-Hun;JUNG, Sung-Gwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.42-55
    • /
    • 2017
  • Since the phases and patterns of the climate adaptability of vegetation can greatly differ from region to region, an intensive pixel scale approach is required. In this study, Partial Least Squares (PLS) regression on satellite image-based vegetation index is conducted for to assess the effect of climate factors on vegetation productivity and to predict future productivity of forests vegetation in South Korea. The results indicate that the mean temperature of wettest quarter (Bio8), mean temperature of driest quarter (Bio9), and precipitation of driest month (Bio14) showed higher influence on vegetation productivity. The predicted 2050 EVI in future climate change scenario have declined on average, especially in high elevation zone. The results of this study can be used in productivity monitoring of climate-sensitive vegetation and estimation of changes in forest carbon storage under climate change.

Assessment of Historical and Future Climatic Trends in Seti-Gandaki Basin of Nepal. A study based on CMIP6 Projections

  • Bastola Shiksha;Cho Jaepil;Jung Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.162-162
    • /
    • 2023
  • Climate change is a complex phenomenon having its impact on diverse sectors. Temperature and precipitation are two of the most fundamental variables used to characterize climate, and changes in these variables can have significant impacts on ecosystems, agriculture, and human societies. This study evaluated the historical (1981-2010) and future (2011-2100) climatic trends in the Seti-Gandaki basin of Nepal based on 5 km resolution Multi Model Ensemble (MME) of 18 Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) for SSP1-2.6, SSP2-4.5 and SSP5-85 scenarios. For this study, ERA5 reanalysis dataset is used for historical reference dataset instead of observation dataset due to a lack of good observation data in the study area. Results show that the basin has experienced continuous warming and an increased precipitation pattern in the historical period, and this rising trend is projected to be more prominent in the future. The Seti basin hosts 13 operational hydropower projects of different sizes, with 10 more planned by the government. Consequently, the findings of this study could be leveraged to design adaptation measures for existing hydropower schemes and provide a framework for policymakers to formulate climate change policies in the region. Furthermore, the methodology employed in this research could be replicated in other parts of the country to generate precise climate projections and offer guidance to policymakers in devising sustainable development plans for sectors like irrigation and hydropower.

  • PDF

Prediction of Climate Change Impacts on Streamflow of Daecheong Lake Area in South Korea

  • Kim, Yoonji;Yu, Jieun;Jeon, Seongwoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.169-169
    • /
    • 2020
  • According to the IPCC analysis, severe climate changes are projected to occur in Korea as the temperature is expected to rise by 3.2 ℃, the precipitation by 15.6% and the sea level by 27cm by 2050. It is predicted that the occurrence of abnormal climate phenomena - especially those such as increase of concentrated precipitation and extreme heat in the summer season and severe drought in the winter season - that have happened in Korea in the past 30 years (1981-2010) will continuously be intensified and accelerated. As a result, the impact on and vulnerability of the water management sector is expected to be exacerbated. This research aims to predict the climate change impacts on streamflow of Daecheong Lake area of Geum River in South Korea during the summer and winter seasons, which show extreme meteorological events, and ultimately develop an integrated policy model in response. We projected and compared the streamflow changes of Daecheong Lake area of Geum River in South Korea in the near future period (2020-2040) and the far future period (2041-2060) with the reference period (1991-2010) using the HEC-HMS model. The data from a global climate model HadGEM2-AO, which is the fully-coupled atmosphere-ocean version of the Hadley Centre Global Environment Model 2, and RCP scenarios (RCP4.5 and RCP8.5) were used as inputs for the HEC-HMS model to identify the river basins where cases of extreme flooding or drought are likely to occur in the near and far future. The projections were made for the summer season (July-September) and the winter season(November-January) in order to reflect the summer monsoon and the dry winter. The results are anticipated to be used by policy makers for preparation of adaptation plans to secure water resources in the nation.

  • PDF

Impact of Climate Change on An Urban Drainage System (기후변화가 도시배수시스템에 미치는 영향)

  • Kang, Na-Rae;Kim, Soo-Jun;Lee, Keon-Haeng;Kim, Duck-Gil;Kwak, Jae-Won;Noh, Hui-Sung;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.623-631
    • /
    • 2011
  • In recent decade, the occurrences of typhoon and severe storm events are increasing trend due to the climate change. And the intensity of natural disaster is more and more stronger and the loss of life and damage of property are also increasing. Therefore, this study tried to understand the impact of climate change on urban drainage system for prevention and control of natural disaster and for this, we selected Gyeyang-gu, Incheon city as a study area. We investigated the climate models and scenarios for the selection of proper model and scenario, then we estimated frequency based rainfall in hourly unit considering climate change. The XP-SWMM model was used to estimate the future flood discharge on urban drainage system using the estimated frequency based rainfall. As a result, we have known that the study area will be overflown in the future and so we may need prepare proper measures for the flood prevention and control.

Assessment of the Impact of Climate Change on Marine Ecosystem in the South Sea of Korea (기후변화가 남해 해양생태계에 미치는 영향평가)

  • Ju, Se-Jong;Kim, Se-Joo
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.197-199
    • /
    • 2012
  • According to the IPCC climate change scenario (A1B scenario), the surface seawater temperature of the South Sea of Korea by 2100 may be $2-3.5^{\circ}C$ higher than at present, and seawater pH may decrease from 8.1 to 7.8, due to the increase in atmospheric $CO_2$, which is predicted to increase in concentration from 380 to 750 ppm. These changes may not only intensify the strength of typhoons/storm surges but also affect the function and structure the marine ecosystem. In order to assess the impact of climate change on the marine ecosystem in Korean waters, the project named the 'Assessment of the impact of climate change on marine ecosystem in the South Sea of Korea' has been supported by the Ministry of Land, Transport and Maritime Affairs, from 2008. The goal of this project is to enhance our ability to adapt and prepare for the future environmental changes through the reliable predictions based on the knowledge obtained from projects like this. In this respect, this project is being conducted to investigate the effects of climate/marine environment changes (ocean warming and acidification), and to predict future changes of the structure and function of the ecosystem in the South Sea of Korea. This special issue contains 6 research articles, which are the highlights of the studies carried out through this project.

Projected Spatial-Temporal changes in carbon reductions of Soil and Vegetation in South Korea under Climate Change, 2000-2100 (기후변화에 따른 식생과 토양에 의한 탄소변화량 공간적 분석)

  • Lee, Dong-Kun;Park, Chan;Oh, Young-Chool
    • Journal of Korean Society of Rural Planning
    • /
    • v.16 no.4
    • /
    • pp.109-116
    • /
    • 2010
  • Climate change is known to affect both natural and managed ecosystems, and will likely impact on the terrestrail carbon balance. This paper reports the effects of climate change on spatial-temporal changes in carbon reductions in South Korea's during 2000-2100. Future carbon (C) stock distributions are simulated for the same period using various spatial data sets including land cover, net primary production(NPP) and leaf area index (LAI) obtained from MODIS(Moderate Resolution Imaging Spectroradiometer), and climate data from Data Assimilation Office(DAO) and Korea Meteorological Administration(KMA). This study attempts to predict future NPP using multiple linear regression and to model dependence of soil respiration on soil temperature. Plants store large amounts of carbon during the growing periods. During 2030-2100, Carbon accumulation in vegetation was increased to $566{\sim}610gC/m^2$/year owing to climate change. On the other hand, soil respiration is a key ecosystem process that releases carbon from the soil in the form of carbon dioxide. The estimated soil respiration spatially ranged from $49gC/m^2$/year to $231gC/m^2$/year in the year of 2010, and correlating well with the reference value. This results include Spatial-Temporal C reduction variation caused by climate change. Therefore this results is more comprehensive than previous results. The uncertainty in this study is still large, but it can be reduced if a detailed map becomes available.

Accessing socio-economic and climate change impacts on surface water availability in Upper Indus Basin, Pakistan with using WEAP model.

  • Mehboob, Muhammad Shafqat;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.407-407
    • /
    • 2019
  • According to Asian Development Bank report Pakistan is among water scarce countries. Climate scenario on the basis IPCC fifth assessment report (AR5) revealed that annual mean temperature of Pakistan from year 2010-2019 was $17C^o$ which will rise up to $21C^o$ at the end of this century, similarly almost 10% decrease of annual rainfall is expected at the end of the century. It is a changing task in underdeveloped countries like Pakistan to meet the water demands of rapidly increasing population in a changing climate. While many studies have tackled scarcity and stream flow forecasting of the Upper Indus Basin (UIB) Pakistan, very few of them are related to socio-economic and climate change impact on sustainable water management of UIB. This study investigates the pattern of current and future surface water availability for various demand sites (e.g. domestic, agriculture and industrial) under different socio-economic and climate change scenarios in Upper Indus Basin (UIB) Pakistan for a period of 2010 to 2050. A state-of-the-art planning tool Water Evaluation and Planning (WEAP) is used to analyze the dynamics of current and future water demand. The stream flow data of five sub catchment (Astore, Gilgit, Hunza, Shigar and Shoyke) and entire UIB were calibrated and validated for the year of 2006 to 2011 using WEAP. The Nash Sutcliffe coefficient and coefficient of determination is achieved ranging from 0.63 to 0.92. The results indicate that unmet water demand is likely to increase severe threshold and the external driving forces e.g. socio-economic and climate change will create a gap between supply and demand of water.

  • PDF

Comparing climate projections for Asia, East Asia and South Korea (아시아 대륙, 동아시아, 대한민국을 대상으로 다른 공간적 규모의 기후변화시나리오 예측 비교)

  • Choe, Hyeyeong;Thorne, James H.;Lee, Dongkun
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.2
    • /
    • pp.114-126
    • /
    • 2017
  • Many studies on climate change and its impacts use a single climate scenario. However, one climate scenario may not accurately predict the potential impacts of climate change. We estimated temperature and precipitation changes by 2070 using 17 of the CMIP5 Global Climate Models (GCMs) and two emission scenarios for three spatial domains: the Asian continent, six East Asia countries, and South Korea. For South Korea, the range of increased minimum temperature was lower than for the ranges of the larger regions, but the range of projected future precipitation was higher. The range of increased minimum temperatures was between $1.3^{\circ}C$ and $5.2^{\circ}C$, and the change in precipitation ranged from - 42.4 mm (- 3.2%) and + 389.8 mm (+ 29.6%) for South Korea. The range of increased minimum temperatures was between $2.3^{\circ}C$ and $8.5^{\circ}C$ for East Asia countries and was between $2.1^{\circ}C$ and $7.4^{\circ}C$ for the Asian continent, and the change in precipitation ranged from 28.8 mm (+ 6.3%) and 156.8 mm (+ 34.3%) for East Asia countries and from 32.4 mm (+ 5.5%) and 126.2 mm (+ 21.3%) for the Asian continent. We suggest climate change studies in South Korea should not use a single GCM or only an ensemble climate model's output and we recommend to use GFDL-CM3 and INMCM4 GCMs to bracket projected change for use in other national climate change studies to represent the range of projected future climate conditions.

The Present Status and Development Plan in the Field of Climate Change Science in Korea analyzed by the IPCC-IV Reports (IPCC-IV 국가 보고서 분석에 의한 한국의 기후변화과학 분야의 현황과 발전방향)

  • Chung, Yun-Ang;Chung, Hyo-Sang;Ryu, Chan-Su
    • Journal of Integrative Natural Science
    • /
    • v.4 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • The recent global warming may be estimated to give lots of impacts to the human society and biosphere of influencing climate change included by the natural climate variations through the human activity which can directly and/or indirectly play a major role of total atmospheric composition overall. Therefore it currently appears evidences such as hot wave, typhoon, and biosphere disturbance, etc. over the several regions to be influenced by global warming due to increasing the concentration of greenhouse gases in the atmosphere through inducing forest destruction, fossil fuel combustion, greenhouse gases emission, etc. since industrial revolution era. Through the working group report of IPCC (Intergovernmental Panel on Climate Change) for climate change was analyzed by the individual country's current status and figure out the important issues and problems related to the future trend of climate change science with advanced countries preparedness and research, In this study, the first working group report of IPCC focuses on those aspects of the current understanding of the physical science of climate change that are judged to be most relevant to policymakers. As this report was assessed and analyzed by including the progress of climate change science, the role of climate models and evolution in the treatment of uncertainties. This consists of the changes in atmospheric constituents(both aerosols and gases) that affect the radiative energy balance in the atmosphere and determine the Earth's climate, considering the interaction between biogeochemical cycles that affect atmospheric constituents and climate change, including aerosol/cloud interactions, the extensive range of observations snow available for the atmosphere and surface, for snow, ice, and frozen ground and for the oceans, respectively and changes in sea level, the paleoclimate perspective and assessment of evidence for past climate change and the extension, the ways in which physical processes are simulated in climate models and the evaluation of models against observed climate, the development plans and methods of improving expert and building manpower urgently and R&D fund expansion in detail for climate change science in Korea will be proposed.

The Use and Abuse of Climate Scenarios in Agriculture (농업부문 기후시나리오 활용의 주의점)

  • Kim, Jin-Hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.3
    • /
    • pp.170-178
    • /
    • 2016
  • It is not clear how to apply the climate scenario to assess the impact of climate change in the agricultural sector. Even if you apply the same scenario, the result can vary depending on the temporal-spatial downscaling, the post-treatment to adjust the bias of a model, and the prediction model selection (used for an impact assessment). The end user, who uses the scenario climate data, should select climate factors, a spatial extend, and a temporal range appropriate for the objectives of an analysis. It is important to draw the impact assessment results with minimum uncertainty by evaluating the suitability of the data including the reproducibility of the past climate and calculating the optimum future climate change scenario. This study introduced data processing methods for reducing the uncertainties in the process of applying the future climate change scenario to users in the agricultural sector and tried to provide basic information for appropriately using the scenario data in accordance with the study objectives.