• Title/Summary/Keyword: Future Weapon System

Search Result 178, Processing Time 0.025 seconds

A Synthetic Enviornment Based Engagement Simulation Model (합성환경 기반 교전모의)

  • Park, Sang-Chul;Seong, Kil-Young
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.4
    • /
    • pp.271-278
    • /
    • 2010
  • Weapon systems for future war require operating various war scenarios that are getting complex. Similarly, modeling and simulation technique is getting attention to acquire more effective weapon systems. Several S/W tools exist for simulating small scale engagements which depict a kind of war. However, it is very hard to model combat objects more systematic, and reuse them. To overcome these difficulties, this paper presents a modeling methodology for simulating small scale engagement using the DEVS-formalism. In this paper, we systematically classified and defined combat objects, likewise, explain a framework for a small scale combat simulation.

Analyzing the Modern Warfare and Weapon Systems Supported by Improved GPS Informations

  • Ko, Kwang-Soob
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.3
    • /
    • pp.234-239
    • /
    • 2015
  • This paper focuses on analyzing the modern warfare and weapon systems supported by improved GPS informations. The GPS capability was investigated through the real experimental test for verifying the most recent GPS features under its modernization processing. And then it was verified that such capabilities, accuracy and availability, of a typical L1, C/A code GPS receiver are equivalent to the military receiver's ones. It was also sure that the influence of GPS improved informations on NCW(Network-Centric Warfare), PGM(Precision Guided Munition) and C4SIR(Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance) should be increased and the modern warfare may be strongly dependent on GNSS informations.

A Study on Intelligent Combat Robot Systems for Future Warfare

  • Sung-Kwon Kim;Sang-Hyuk Park
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.165-170
    • /
    • 2023
  • This study focuses on the development of intelligent combat robot systems for future warfare. The research is structured as follows: First, the introduction presents the rationale for researching intelligent combat robots and their potential to become game changers in future warfare. Second, in the context of the intelligent robot paradigm, this study proposes the need for military organizations to innovate their combat concepts and weapon systems through the effective utilization of Artificial Intelligence, Cognitive, Biometric, and Mechanical technologies. This forms the theoretical background of the study. Third, the analysis of intelligent robot systems considers five examples: humanoid robots, jumping robots, wheeled and quadrupedal pack robots, and tank robots. Finally, the discussion and conclusion propose that intelligent combat robots should be selected as game changers in military organizations for future warfare, and suggest further research in this area.

Future Tactical Communication System Development Plan (미래 전술통신체계의 발전 방안)

  • Kim, Junseob;Park, Sangjun;Cha, Jinho;Kim, Yongchul
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.14-23
    • /
    • 2021
  • The Army is making efforts to increase combat power by incorporating technologies related to the Fourth Industrial Revolution into the field of defense. In order to utilize these technologies, it is necessary to develop a military tactical communication system that enables transmission and reception of data between command and control system and weapon systems. Therefore, in this paper, we analyze the tactical communication systems of the other countries, derive the limitations of the tactical communication system currently operating in the military. And, a multi-layered integrated operation structure centered on satellites and plans to provide communication on the move to small units are reviewed. Then, we present the necessity of a large-capacity transmission speed by predicting the amount of data that will be generated from weapon systems of the future, and a plan to efficiently manage the network using intelligent network technology.

The Action of the Reliability Enhancement in Test and Evaluation of the Weapon Systems (무기체계 시험평가의 신뢰성 향상방안)

  • Park, Jong Wan
    • Journal of Applied Reliability
    • /
    • v.15 no.2
    • /
    • pp.108-123
    • /
    • 2015
  • Test and Evaluation (T&E) have been verifying the level of it's technological skill and the needed operational status of the development weapons. If the overall spectrum of test and evaluation is fulfilled substantially in the production & deployment, the needed level of the weapon system will be enhanced and also the reliability status will become higher considerably. We can know currently these issues through the mass media and all kinds of the news regarding the defense industry and programs. And so this article have studied the method of enhancing reliability of the test and evaluation, the 6 variables were selected through the discussion of the professional group. The the test and evaluation group needs consistently the professional training systems. After DT&E, we have to the event to verify the technical level of the development systems. We have to take the high level of the kinds of the environmental test. Scientific methods like system engineering will be adapted in process of the test and evaluation. The number of suitable test prototype in the test and evaluation is analysed more systematically. And we need to establish the standardization of the test and evaluation. If 6 variables are well analysed and adapted in the working field, the reliability of the test and evaluation will be considerably, the defense industry will take the chance to develope the future-oriented.

A direction of warfighting experiments for a scientific combat Development (과학적 전투발전을 위한 전투실험 발전 방향)

  • Chung, Choon-Il;Lee, Myeong-Woo
    • Journal of National Security and Military Science
    • /
    • s.5
    • /
    • pp.351-392
    • /
    • 2007
  • Combat Development is process of studying and developing concept, doctrine, weapon systems, organization and training for the improvement of combat capability to be ready present and future warfare. The combat development domain consists of 6 fields Doctrine, Organization, Material, Training, Personnel, and Facilities. The cornerstones of combat development are "How to prepare" and "How to fight" in the future warfare. ROK- TRADOC(Republic of Korea Army Training and Doctrine Command) has implemented combat development that applies CBRS (Concept-Based Requirements System) and "Vision - Capstone concept - operating and functional concept - FOC(Future Operational Capabilities) Requirements". To prepare for the possibility or new types or wars in the future, the creation of new concept and system is essential. Though verification with various instruments, combat power can be secured and exhibited. Combat development by empirical mind estimation means that is no longer relevant.To prepare combat development based on scientific analysis, there is a need for powerful engineering analysis and verification, in order to prepare for uncertain and diverse future battlefield environments. In this thesis, warfighting experiment is essential ways and means to pursue the scientific combat development ; investigated tendency of combat development environment, and analyzed diversification aspects of possible future warfare. In conclusion, concept of campaign experiment and role is the conerstone of scientific combat development; and lays out the roadmap of all affecting components to its development.

  • PDF

Analysis of Improving Requirement on Military Security Regulations for Future Command Control System (미래 지휘통제체계를 위한 보안 규정 개선 요구사항 분석)

  • Kang, Jiwon;Moon, Jae Woong;Lee, Sang Hoon
    • Convergence Security Journal
    • /
    • v.20 no.1
    • /
    • pp.69-75
    • /
    • 2020
  • The command control system, like the human brain and nervous system, is a linker that connects the Precision Guided Missile(PGR) in information surveillance and reconnaissance (ISR) and is the center of combat power. In establishing the future command and control system, the ROK military should consider not only technical but also institutional issues. The US Department of Defense establishes security policies, refines them, and organizes them into architectural documents prior to the development of the command and control system. This study examines the security architecture applied to the US military command control system and analyzes the current ROK military-related policies (regulations) to identify security requirements for the future control system. By grouping the identified security requirements, this study identifies and presents field-specific enhancements to existing security regulations.

A study on Convergence Weapon Systems of Self propelled Mobile Mines and Supercavitating Rocket Torpedoes (자항 기뢰와 초공동 어뢰의 융복합 무기체계 연구)

  • Lee, Eunsu;Shin, Jin
    • Maritime Security
    • /
    • v.7 no.1
    • /
    • pp.31-60
    • /
    • 2023
  • This study proposes a new convergence weapon system that combines the covert placement and detection abilities of a self-propelled mobile mine with the rapid tracking and attack abilities of supercavitating rocket torpedoes. This innovative system has been designed to counter North Korea's new underwater weapon, 'Haeil'. The concept behind this convergence weapon system is to maximize the strengths and minimize the weaknesses of each weapon type. Self-propelled mobile mines, typically placed discreetly on the seabed or in the water, are designed to explode when a vessel or submarine passes near them. They are generally used to defend or control specific areas, like traditional sea mines, and can effectively limit enemy movement and guide them in a desired direction. The advantage that self-propelled mines have over traditional sea mines is their ability to move independently, ensuring the survivability of the platform responsible for placing the sea mines. This allows the mines to be discreetly placed even deeper into enemy lines, significantly reducing the time and cost of mine placement while ensuring the safety of the deployed platforms. However, to cause substantial damage to a target, the mine needs to detonate when the target is very close - typically within a few yards. This makes the timing of the explosion crucial. On the other hand, supercavitating rocket torpedoes are capable of traveling at groundbreaking speeds, many times faster than conventional torpedoes. This rapid movement leaves little room for the target to evade, a significant advantage. However, this comes with notable drawbacks - short range, high noise levels, and guidance issues. The high noise levels and short range is a serious disadvantage that can expose the platform that launched the torpedo. This research proposes the use of a convergence weapon system that leverages the strengths of both weapons while compensating for their weaknesses. This strategy can overcome the limitations of traditional underwater kill-chains, offering swift and precise responses. By adapting the weapon acquisition criteria from the Defense force development Service Order, the effectiveness of the proposed system was independently analyzed and proven in terms of underwater defense sustainability, survivability, and cost-efficiency. Furthermore, the utility of this system was demonstrated through simulated scenarios, revealing its potential to play a critical role in future underwater kill-chain scenarios. However, realizing this system presents significant technical challenges and requires further research.

  • PDF

Exact Algorithm for the Weapon Target Assignment and Fire Scheduling Problem (표적 할당 및 사격순서결정문제를 위한 최적해 알고리즘 연구)

  • Cha, Young-Ho;Jeong, BongJoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.143-150
    • /
    • 2019
  • We focus on the weapon target assignment and fire scheduling problem (WTAFSP) with the objective of minimizing the makespan, i.e., the latest completion time of a given set of firing operations. In this study, we assume that there are m available weapons to fire at n targets (> m). The artillery attack operation consists of two steps of sequential procedure : assignment of weapons to the targets; and scheduling firing operations against the targets that are assigned to each weapon. This problem is a combination of weapon target assignment problem (WTAP) and fire scheduling problem (FSP). To solve this problem, we define the problem with a mixed integer programming model. Then, we develop exact algorithms based on a dynamic programming technique. Also, we suggest how to find lower bounds and upper bounds to a given problem. To evaluate the performance of developed exact algorithms, computational experiments are performed on randomly generated problems. From the results, we can see suggested exact algorithm solves problems of a medium size within a reasonable amount of computation time. Also, the results show that the computation time required for suggested exact algorithm can be seen to increase rapidly as the problem size grows. We report the result with analysis and give directions for future research for this study. This study is meaningful in that it suggests an exact algorithm for a more realistic problem than existing researches. Also, this study can provide a basis for developing algorithms that can solve larger size problems.

A Study on the AoA Based Defense Decision Making

  • Lee, Kyoung Haeng;Kwon, Yong Soo
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • This work describes a study on the Analysis of Alternatives (AoA) based defense decision making. Future battle-space is transformed into a System of Systems (SoS) concept which is accomplished missions and their functions through network based battle management systems under forming their grids of various sensors and shooters in a single theater. The acquisition process is, therefore, changing over from single system requirements to capabilities based acquisition of SoS. AoA help to justify the need for starting, stopping, or continuing an acquisition program. AoA identify potentially viable solutions and provide comparative cost, effectiveness, and risk assessments of each solution to a baseline. The decision making must consider not only cost-effectiveness, risk, and military worth, but also domestic policy, foreign policy, technological maturity of the solution, the environment, the budget, treaties, and a host of additional factors. In this point of view, this paper analyzes AoA template which are critical elements of the defense decision making. From results of this analysis of AoA template for Korean acquisition environment are presented.