• Title/Summary/Keyword: Future Prediction

Search Result 1,799, Processing Time 0.032 seconds

Application of Markov Chains and Monte Carlo Simulations for Pavement Construction Engineering

  • Nega, Ainalem;Gedafa, Daba
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1043-1050
    • /
    • 2022
  • Markov chains and Monte Carlo Simulation were applied to account for the probabilistic nature of pavement deterioration over time using data collected in the field. The primary purpose of this study was to evaluate pavement network performance of Western Australia (WA) by applying the existing pavement management tools relevant to WA road construction networks. Two approaches were used to analyze the pavement networks: evaluating current pavement performance data to assess WA State Road networks and predicting the future states using past and current pavement data. The Markov chains process and Monte Carlo Simulation methods were used to predicting future conditions. The results indicated that Markov chains and Monte Carlo Simulation prediction models perform well compared to pavement performance data from the last four decades. The results also revealed the impact of design, traffic demand, and climate and construction standards on urban pavement performance. This study recommends an appropriate and effective pavement engineering management system for proper pavement design and analysis, preliminary planning, future pavement maintenance and rehabilitation, service life, and sustainable pavement construction functionality.

  • PDF

A Study on the Development of Anomaly Detection Prediction Model for Deep Learning-Based Drilling Equipment (딥러닝 기반 시추장비 이상 예측 및 진단 모델 개발 연구)

  • Han, Dong-Kwon;Kim, Min-Soo;Kwon, Sun-Il;Choi, Jung-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.404-407
    • /
    • 2021
  • 석유개발 현장에서 시추장비의 고장으로 인한 장비교체 및 시추시간 증가는 막대한 비용소모를 발생시킨다. 본 논문은 딥러닝 기반의 시추장비 중 드릴비트의 동력을 구동시키는 디젤엔진의 고장 요소를 분류하고 이 요소에 따른 고장여부를 판별하는 딥러닝 기반의 이상 예측 및 진단 모델을 개발하였다. 또한 제안한 모델의 우수성을 확인하기 위해 로지스틱 회귀분석 분류모델과의 예측성능 비교분석도 수행하였다.

Trends and Future Prospects of AI Technologies for Building Energy Management (건물 에너지 관리를 위한 인공지능 기술 동향과 미래 전망)

  • J. Jeong;W.K. Park
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.4
    • /
    • pp.32-41
    • /
    • 2024
  • Building energy management plays a crucial role in improving energy efficiency and optimizing energy usage. To achieve this, it is important to monitor and analyze energy-related data from buildings in real time using sensors to understand energy consumption patterns and establish optimal operational strategies. Because of the uncertainties in building energy-related data, there are challenges in analyzing these data and formulating operational strategies based on them. Artificial intelligence (AI) technology can help overcome these challenges. This paper investigates past and current research trends in AI technology and examines its future prospects for building energy management. By performing prediction and analysis based on energy consumption or supply data, the future energy demands of buildings can be forecasted and energy consumption can be optimized. Additionally, data related to the surrounding environment, occupancy, and other building energy-related factors can be collected and analyzed using sensors to establish operational strategies aimed at further reducing energy consumption and increasing efficiency. These technologies will contribute to cost savings and help minimize environmental impacts for building owners and operators, ultimately facilitating sustainable building operations.

Rainfall Prediction of Seoul Area by the State-Vector Model (상태벡터 모형에 의한 서울지역의 강우예측)

  • Chu, Chul
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.219-233
    • /
    • 1995
  • A non-stationary multivariate model is selected in which the mean and variance of rainfall are not temporally or spatially constant. And the rainfall prediction system is constructed which uses the recursive estimation algorithm, Kalman filter, to estimate system states and parameters of rainfall model simulataneously. The on-line, real-time, multivariate short-term, rainfall prediction for multi-stations and lead-times is carried out through the estimation of non-stationary mean and variance by the storm counter method, the normalized residual covariance and rainfall speed. The results of rainfall prediction system model agree with those generated by non-stationary multivariate model. The longer the lead time is, the larger the root mean square error becomes and the further the model efficiency decreases form 1. Thus, the accuracy of the rainfall prediction decreases as the lead time gets longer. Also it shows that the mean obtained by storm counter method constitutes the most significant part of the rainfall structure.

  • PDF

Health State Clustering and Prediction Based on Bayesian HMM (Bayesian HMM 기반의 건강 상태 분류 및 예측)

  • Sin, Bong-Kee
    • Journal of KIISE
    • /
    • v.44 no.10
    • /
    • pp.1026-1033
    • /
    • 2017
  • In this paper a Bayesian modeling and duration-based prediction method is proposed for health clinic time series data using the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM). HDP-HMM is a Bayesian extension of HMM which can find the optimal number of health states, a number which is highly uncertain and even difficult to estimate under the context of health dynamics. Test results of HDP-HMM using simulated data and real health clinic data have shown interesting modeling behaviors and promising prediction performance over the span of up to five years. The future of health change is uncertain and its prediction is inherently difficult, but experimental results on health clinic data suggests that practical long-term prediction is possible and can be made useful if we present multiple hypotheses given dynamic contexts as defined by HMM states.

A Study on the Recognition of Korean Numerals Using Recurrent Neural Predictive HMM (회귀신경망 예측 HMM을 이용한 숫자음 인식에 관한 연구)

  • 김수훈;고시영;허강인
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.8
    • /
    • pp.12-18
    • /
    • 2001
  • In this paper, we propose the Recurrent Neural Predictive HMM (RNPHMM). The RNPHMM is the hybrid network of the recurrent neural network and HMM. The predictive recurrent neural network trained to predict the future vector based on several last feature vectors, and defined every state of HMM. This method uses the prediction value from the predictive recurrent neural network, which is dynamically changing due to the effects of the previous feature vectors instead of the stable average vectors. The models of the RNPHMM are Elman network prediction HMM and Jordan network prediction HMM. In the experiment, we compared the recognition abilities of the RNPHMM as we increased the state number, prediction order, and number of hidden nodes for the isolated digits. As a result of the experiments, Elman network prediction HMM and Jordan network prediction HMM have good recognition ability as 98.5% for test data, respectively.

  • PDF

Prediction of Ultimate Scour Potentials in a Shallow Plunge Pool (얕은 감세지내의 극한 세굴잠재능 예측)

  • 손광익
    • Water for future
    • /
    • v.27 no.1
    • /
    • pp.123-131
    • /
    • 1994
  • A plunge pool is often employed as an energy-dissipating device at the end of a spillway or a pipe culvert. A jet from spillways or pipes frequently generates a scour hole which threatens the stability of the hydraulic structure. Existing scour prediction formulas of plunge pool of spillways or pipe culverts give a wide range of scour depths, and it is, therefore, difficult to accurately predict those scour depths. In this study, a new experimental method and new scour prediction formulas under submerged circular jet for large bed materials with shallow tailwater depths were developed. A major variale, which was not used in previous scour prediction equations, was the ratio of jet size to bed material size. In this study, jet momentum acting on a bed particle and jet diffustion theory were employed to derive scour prediction formulas. Four theoretical formulas were suggested for the two regions of jet diffusion, i.e., the region of flow establishment and the region of established flow. The semi-theoretically developed scour prediction formulas showed close agreement with laboratory experiments performed on a movable bed made of large spherical particles.

  • PDF

Heuristic and Statistical Prediction Algorithms Survey for Smart Environments

  • Malik, Sehrish;Ullah, Israr;Kim, DoHyeun;Lee, KyuTae
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1196-1213
    • /
    • 2020
  • There is a growing interest in the development of smart environments through predicting the behaviors of inhabitants of smart spaces in the recent past. Various smart services are deployed in modern smart cities to facilitate residents and city administration. Prediction algorithms are broadly used in the smart fields in order to well equip the smart services for the future demands. Hence, an accurate prediction technology plays a vital role in the smart services. In this paper, we take out an extensive survey of smart spaces such as smart homes, smart farms and smart cars and smart applications such as smart health and smart energy. Our extensive survey is based on more than 400 articles and the final list of research studies included in this survey consist of 134 research papers selected using Google Scholar database for period of 2008 to 2018. In this survey, we highlight the role of prediction algorithms in each sub-domain of smart Internet of Things (IoT) environments. We also discuss the main algorithms which play pivotal role in a particular IoT subfield and effectiveness of these algorithms. The conducted survey provides an efficient way to analyze and have a quick understanding of state of the art work in the targeted domain. To the best of our knowledge, this is the very first survey paper on main categories of prediction algorithms covering statistical, heuristic and hybrid approaches for smart environments.

Prediction model of peptic ulcer diseases in middle-aged and elderly adults based on machine learning (머신러닝 기반 중노년층의 기능성 위장장애 예측 모델 구현)

  • Lee, Bum Ju
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.289-294
    • /
    • 2020
  • Peptic ulcer disease is a gastrointestinal disorder caused by Helicobacter pylori infection and the use of nonsteroid anti-inflammatory drugs. While many studies have been conducted to find the risk factors of peptic ulcers, there are no studies on the suggestion of peptic ulcer prediction models for Koreans. Therefore, the purpose of this study is to implement peptic ulcer prediction model using machine learning based on demographic information, obesity information, blood information, and nutritional information for middle-aged and elderly people. For model building, wrapper-based variable selection method and naive Bayes algorithm were used. The classification accuracy of the female prediction model was the area under the receiver operating characteristics curve (AUC) of 0.712, and males showed an AUC of 0.674, which is lower than that of females. These results can be used for prediction and prevention of peptic ulcers in the middle and elderly people.

Classification Prediction Error Estimation System of Microarray for a Comparison of Resampling Methods Based on Multi-Layer Perceptron (다층퍼셉트론 기반 리 샘플링 방법 비교를 위한 마이크로어레이 분류 예측 에러 추정 시스템)

  • Park, Su-Young;Jeong, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.2
    • /
    • pp.534-539
    • /
    • 2010
  • In genomic studies, thousands of features are collected on relatively few samples. One of the goals of these studies is to build classifiers to predict the outcome of future observations. There are three inherent steps to build classifiers: a significant gene selection, model selection and prediction assessment. In the paper, with a focus on prediction assessment, we normalize microarray data with quantile-normalization methods that adjust quartile of all slide equally and then design a system comparing several methods to estimate 'true' prediction error of a prediction model in the presence of feature selection and compare and analyze a prediction error of them. LOOCV generally performs very well with small MSE and bias, the split sample method and 2-fold CV perform with small sample size very pooly. For computationally burdensome analyses, 10-fold CV may be preferable to LOOCV.