• Title/Summary/Keyword: Fusobacterium hwasookii

Search Result 2, Processing Time 0.014 seconds

Development of strain-specific polymerase chain reaction primers to detect Fusobacterium hwasookii strains

  • Lim, Yun Kyong;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.46 no.4
    • /
    • pp.155-159
    • /
    • 2021
  • This study aimed to develop strain-specific polymerase chain reaction (PCR) primers to detect Fusobacterium hwasookii KCOM 1249T, F. hwasookii KCOM 1253, F. hwasookii KCOM 1256, F. hwasookii KCOM 1258, and F. hwasookii KCOM 1268 on the basis of nucleotide sequences of a gene specific to each strain. The unique genes for each F. hwasookii strain were determined on the basis of their genome sequences using Roary. The strain-specific PCR primers based on each strain-specific gene were designed using PrimerSelect. The specificity of each PCR primer was determined using the genomic DNA of the 5 F. hwasookii strains and 25 strains of oral bacterial species. The detection limit and sensitivity of each strain-specific PCR primer pair were determined using the genomic DNA of each target strain. The results showed that the strain-specific PCR primers correspond to F. hwasookii KCOM 1249T, F. hwasookii KCOM 1253, F. hwasookii KCOM 1258, F. hwasookii KCOM 1256/F. nucleatum subsp. polymorphum KCOM 1260, or F. hwasookii KCOM 1268/Fusobacterium sp. oral taxon 203 were developed. The detection limits of these strain-specific PCR primers ranged from 0.2 to 2 ng of genomic DNA for each target strain. The results suggest that these strain-specific PCR primers are valuable in quality control for detecting specific F. hwasookii strains.

Genome-based identification of strain KCOM 1265 isolated from subgingival plaque at the species level

  • Park, Soon-Nang;Lim, Yun Kyong;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.45 no.2
    • /
    • pp.70-75
    • /
    • 2020
  • The aim of this study was to identify strain KCOM 1265 isolated from subgingival plaque at the species level by comparing 16S ribosomal RNA gene (16S rDNA) and genome sequences. The whole genome of strain KCOM 1265 was extracted using the phenol-chloroform extraction method. 16S rDNA was amplified using polymerase chain reaction and sequenced using the dideoxy chain termination method. Pairwise genome comparison was performed using average nucleotide identity (ANI) and genome-to-genome distance (GGD) analyses. The data showed that the percent similarity of 16S rDNA sequence of strain KCOM 1265 was 99.6% as compared with those of Fusobacterium polymorphum ATCC 10953T and Fusobacterium hwasookii KCOM 1249T. The ANI values of strain KCOM 1265 with F. polymorphum ATCC 10953T and F. hwasookii KCOM 1249T were 95.8% and 93.0%, respectively. The GGD values of strain KCOM 1265 with F. polymorphum ATCC 10953T and F. hwasookii KCOM 1249T were 63.9% and 49.6%, respectively. These results indicate that strain KCOM 1265 belongs to F. polymorphum.