• Title/Summary/Keyword: Fusion-splicing

Search Result 22, Processing Time 0.012 seconds

Identification of Alternative Splicing and Fusion Transcripts in Non-Small Cell Lung Cancer by RNA Sequencing

  • Hong, Yoonki;Kim, Woo Jin;Bang, Chi Young;Lee, Jae Cheol;Oh, Yeon-Mok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.2
    • /
    • pp.85-90
    • /
    • 2016
  • Background: Lung cancer is the most common cause of cancer related death. Alterations in gene sequence, structure, and expression have an important role in the pathogenesis of lung cancer. Fusion genes and alternative splicing of cancer-related genes have the potential to be oncogenic. In the current study, we performed RNA-sequencing (RNA-seq) to investigate potential fusion genes and alternative splicing in non-small cell lung cancer. Methods: RNA was isolated from lung tissues obtained from 86 subjects with lung cancer. The RNA samples from lung cancer and normal tissues were processed with RNA-seq using the HiSeq 2000 system. Fusion genes were evaluated using Defuse and ChimeraScan. Candidate fusion transcripts were validated by Sanger sequencing. Alternative splicing was analyzed using multivariate analysis of transcript sequencing and validated using quantitative real time polymerase chain reaction. Results: RNA-seq data identified oncogenic fusion genes EML4-ALK and SLC34A2-ROS1 in three of 86 normal-cancer paired samples. Nine distinct fusion transcripts were selected using DeFuse and ChimeraScan; of which, four fusion transcripts were validated by Sanger sequencing. In 33 squamous cell carcinoma, 29 tumor specific skipped exon events and six mutually exclusive exon events were identified. ITGB4 and PYCR1 were top genes that showed significant tumor specific splice variants. Conclusion: In conclusion, RNA-seq data identified novel potential fusion transcripts and splice variants. Further evaluation of their functional significance in the pathogenesis of lung cancer is required.

A Development of Small-diameter Composite Helical Spring Structure for Reinforcement of Fiber Splice (광섬유 융착 부위 중접용 미소 직경 복합재료 스프링 구조물 개발)

  • 윤영기;정승환;이우일;이병호;윤희석
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.26-32
    • /
    • 2003
  • Optical fibers, for splice, are stripped of their plastic coatings with a plastic stripper and cut off at the end. Therefore, stripped fibers often receive accidental damages and sustain small flaws or cracks. As a result, the breaking strength of a fiber splice made under normal conditions is reduced to about 0.4∼1 ㎏ on the average, nearly one-tenth of the fiber's strength. This makes it necessary to reinforce the splice. One of the most practical and reliable methods for optical fiber splicing is fusion splicing, comprising the steps of tripping the plastic coatings from the two fiber ends to be splice, placing the two bare fiber ends in an end-to-end position, and of fusion splicing, such as are fusion. Generally, steel bar (SB) sleeve is used to reinforce this fusion-splicing region. However, this type of sleeve has a critical defect to keep optical lose after bent by a sudden load. New type of composite spring (CS) sleeve is developed to make up for the weak points in the SB sleeve. This sleeve has an effect on restoration to the original state after eliminating the bending load. The optical spectrum analyzes results show the availability of reinforcement for the fusion splicing optical fiber using small diameter composite springs under the various loading conditions.

Analysis of Trans-splicing Transcripts in Embryonic Stem Cell (배아줄기세포에서 트랜스 스플라이싱 전사체의 분석)

  • Ha, Hong-Seok;Huh, Jae-Won;Kim, Dae-Soo;Park, Sang-Je;Bae, Jin-Han;Ahn, Kung;Yun, Se-Eun;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.549-552
    • /
    • 2009
  • Genetic mutations by gene fusion result from chromosomal rearrangement, trans-splicing, and intergenic splicing. Trans-splicing is a phenomenon in which two pre-mRNAs grow together into one. We analyzed the trans-splicing products in embryonic stem cells. By using bioinformatic tools, 70 trans-splicing transcripts were identified. They are classified into 6 types according to fusion pattern: 5'UTR-5'UTR, 5'UTR-3'UTR, 3'UTR-3'UTR, 5'UTR-CDS, 3'UTR-CDS, CDS-CDS. The fusion products are more abundant in CDS regions than in UTR regions, which contain multiple intron numbers. Chromosome analysis showing gene fusion via trans-splicing indicated that chromosomes 17 and 19 were activated. These data are of great use for further studies in relation to fusion genes and human diseases.

Chimeric RNAs as potential biomarkers for tumor diagnosis

  • Zhou, Jianhua;Liao, Joshua;Zheng, Xuexiu;Shen, Haihong
    • BMB Reports
    • /
    • v.45 no.3
    • /
    • pp.133-140
    • /
    • 2012
  • Cancers claim millions of lives each year. Early detection that can enable a higher chance of cure is of paramount importance to cancer patients. However, diagnostic tools for many forms of tumors have been lacking. Over the last few years, studies of chimeric RNAs as biomarkers have emerged. Numerous reports using bioinformatics and screening methodologies have described more than 30,000 expressed sequence tags (EST) or cDNA sequences as putative chimeric RNAs. While cancer cells have been well known to contain fusion genes derived from chromosomal translocations, rearrangements or deletions, recent studies suggest that trans-splicing in cells may be another source of chimeric RNA production. Unlike cis-splicing, trans-splicing takes place between two pre-mRNA molecules, which are in most cases derived from two different genes, generating a chimeric non-co-linear RNA. It is possible that trans-splicing occurs in normal cells at high frequencies but the resulting chimeric RNAs exist only at low levels. However the levels of certain RNA chimeras may be elevated in cancers, leading to the formation of fusion genes. In light of the fact that chimeric RNAs have been shown to be overrepresented in various tumors, studies of the mechanisms that produce chimeric RNAs and identification of signature RNA chimeras as biomarkers present an opportunity for the development of diagnoses for early tumor detection.

Low Loss Fusion Splicing of Photonic Crystal Fiber and Single-Mode Fiber (광자결정 광섬유와 단일모드 광섬유 저손실 융착접속)

  • Ahn, Jin-Soo;Park, Kwang-No;Kim, Gil-Hwan;Lee, Sang-Bae;Lee, Kyung-Shik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.15-21
    • /
    • 2009
  • We proposed a fusion splicing method for low splicing loss between a single-mode fiber(SMF) and two different photonic crystal fibers(PCFs) such as a photonic bandgap fiber(PBGF) and highly nonlinear photonic crystal fiber(NL-PCF). The splicing loss between the SMF and PBGF is affected by air-hole collapse. Therefore, we optimized fusion splicer and reduced a splicing loss below 1.22 dB. We also inserted a Intra High Numerical Aperture(UHNA) fiber between the SMF and NL-PCF to achieve a splicing loss of below 2.59 dB.

Construction of bifunctional xylanase-cellulase fusion protein from Bacillus licheniformis NBL420 and its expression in E. coli (Bacillus licheniformis NBL420 유래의 Xylanase-Cellulase 활성을 갖는 융합단백질 제작과 대장균에서의 발현)

  • Hong, In-Pyo;Choi, Shin-Geon
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.161-167
    • /
    • 2009
  • The bifunctional Xylanase-Cellulase hybrid protein was constructed by gene fusion. Two genes corresponding to endoxylanase gene (xylS) and endocellulase gene (celA) were amplified by PCR from Bacillus licleniformis NBL420. It was then linked through splicing by overlap extension (SOE) by PCR method. The two resulting fused hybrids, xyl/cel and cel/xyl, which differ by its orientation, were confirmed by its nucleotide sequencings. One of two fusion genes, xyl/cel was successfully expressed into pET22b(+) vector (pxyl/cel) with bifunctional xylanase-cellulase activity. On the contrary, the other cel/xyl fusion protein showed only cellulase activity with much decreased xylanase activity. Enzymatic properties of Xyl/Cel fusion protein were investigated regarding optimum pH, optimum temp, thermostability, and pH stability. It was revealed that Xyl/Cel fusion protein retained the bifunctional xylanase-cellulase activities eventhough two enzymes were connected with each other directly. These informations could be useful for construction of other hybrid proteins as well as increased range of substrate utilization.

  • PDF

Optical fiber Y-Branch Fabrication and OTDR application (Optical Fiber Y-Branch의 제작과 OTDR 응용)

  • Lee, Sang-Ho;Gang, Min-Ho;Park, Han-Gyu
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.3
    • /
    • pp.21-24
    • /
    • 1981
  • A simple optial fiber Y-branch is fabricated using micro - torch and fusion splicer. Tapered end of two fibers - in -contact is spliced with another fiber. Total insertion loss is 26dB and optical power branchi ng ratio is 0.98. Using fiber Y-branch, an UTDR with simple optical system is realized The resolution of the OTDR is $\pm$ 5m in length and t 0.5 dB/km in loss coefficient.

  • PDF

Development of Porcine Somatic Cell Nuclear Transfer Embryos Following Treatment Time of Endoplasmic Reticulum Stress Inhibitor

  • Kim, Mi-Jeong;Jung, Bae-Dong;Park, Choon-Keun;Cheong, Hee-Tae
    • Development and Reproduction
    • /
    • v.25 no.1
    • /
    • pp.43-53
    • /
    • 2021
  • We examine the effect of endoplasmic reticulum (ER) stress inhibitor treatment time on the in vitro development of porcine somatic cell nuclear transfer (SCNT) embryos. Porcine SCNT embryos were classified by four groups following treatment time of ER stress inhibitor, tauroursodeoxycholic acid (TUDCA; 100 µM); 1) non-treatment group (control), 2) treatment during micromanipulation process and for 3 h after fusion (NT+3 h group), 3) treatment only during in vitro culture after fusion (IVC group), and 4) treatment during micromanipulation process and in vitro culture (NT+IVC group). SCNT embryos were cultured for six days to examine the X-box binding protein 1 (Xbp1) splicing levels, the expression levels of ER stress-associated genes, oxidative stress-related genes, and apoptosis-related genes in blastocysts, and in vitro development. There was no significant difference in Xbp1 splicing level among all groups. Reduced expression of some ER stress-associated genes was observed in the treatment groups. The oxidative stress and apoptosis-related genes were significantly lower in all treatment groups than control (p<0.05). Although blastocyst development rates were not different among all groups (17.5% to 21.7%), the average cell number in blastocysts increased significantly in NT+3 h (48.5±2.3) and NT+IVC (47.7±2.4) groups compared to those of control and IVC groups (p<0.05). The result of this study suggests that the treatment of ER stress inhibitor on SCNT embryos from the micromanipulation process can improve the reprogramming efficiency of SCNT embryos by inhibiting the ER and oxidative stresses that may occur early in the SCNT process.

Fiber Interferometers Based on Low Loss Fusion Splicing of Photonic Crystal Fibers (저손실 융착접속을 이용한 광자결정 광섬유 간섭계)

  • Ahn, Jin-Soo;Kim, Gil-Hwan;Lee, Kwan-Il;Lee, Kyung-Shik;Lee, Sang-Bae
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.5
    • /
    • pp.200-205
    • /
    • 2010
  • We report temperature and strain sensing characteristics of two kinds of in-line fiber interferometers. One interferometer consists of a section of Hollow Optical Fiber(HOF) spliced between two Photonic Bandgap Fibers(PBGF) and the other is built by splicing a section of HOF between two Large Mode Area-Photonic Crystal Fibers(LMA-PCF). To minimize the splice losses, we carefully optimized the heating time and arc current of the splicer so as not to collapse the air holes of the fiber. It is found that the first interferometer has a temperature sensitivity of 15.4 pm/$^{\circ}C$ and a strain sensitivity of 0.24 pm/${\mu}\varepsilon$. The other interferometer exhibits a temperature sensitivity of 17.4 pm/$^{\circ}C$ and a strain sensitivity of 0.2 pm/${\mu}\varepsilon$.