• Title/Summary/Keyword: Fusion temperature

Search Result 657, Processing Time 0.029 seconds

A Study of New Technique Development for Creep Evaluation of Heat Resistant Steel Weldment(I) (내열강 용접부의 크리프 평가 신기술 개발에 관한 연구)

  • 유효선;백승세;권일현;이송인
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.30-30
    • /
    • 2002
  • It has been reported that the creep characteristics on weldment which is composed of weld metal(W.M), fusion line(F.L), heat-affected zone(HAZ), and base meta(B.M) could be unpredictably changed in severe service conditions such as high temperature and high pressure. However, the studies done on creep damage in power plant components have been mostly conducted on B.M and not the creep properties of the localized microstructures in weldment have been thoroughly investigated yet. In this paper, it is investigated the creep characteristics for three microstructures like coarse-grain HAZ(CGHAZ), W.M, and B.M in X20CrMoV121 steel weldment by the small punch-creep-(SP-Creep) test using miniaturized specimen(l0×10×0.5mm). The W.M microstructure possesses the higher creep resistance and shows lower creep strain rate than the B.M and CGHAZ. In the lower creep load the highest creep strain rate is exhibited in CGHAZ, whereas in the higher creep load the B.M represents the high creep strain rate. The power law correlation for all microstructures exists between creep rate and creep load at 600℃. The values of creep load index (n) based on creep strain rate for B.M, CGHAZ, and W.M are 7.54, 4.23, and 5.06, respectively and CGHAZ which shows coarse grains owing to high welding heat has the lowest creep loade index. In all creep loads, the creep life for W.M shows the highest value.

The Effect of Polymer Blending and Extension Conditions on the Properties of Separator Prepared by Wet Process for Li-ion Secondary Battery (고분자 블렌딩 및 연신조건이 리튬 이온전지용 습식 Separator의 물성에 미치는 영향)

  • 문성인;손영수;김순식;김진열
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.45-52
    • /
    • 2002
  • The separator made from the blends of high density polyethylene (HDPE) and ultrahigh molecular weight polyethylene (UHMWPE) was prepared by wet processing to use as Li-ion secondary battery. We investigated effects of the blending of the polymers and the film extension on the mechanical properties of the separator. The mechanical strength of separator increased with increasing molecular weights and contents of UHMWPE, for instance about $1000 kg/\textrm{cm}^2$ with the five times extended film of 6 wt% UHMWPE. The pores of the separator were very uniform with the size of 0.1~$0.12\mu\textrm{m}$. The shut-down characteristic quickly increased at around $130^{\circ}C$ and the fusion temperature was $160^{\circ}C$, so it could be applied to the lithium ion secondary battery.

A Study on New Technique Development for Creep Evaluation of Heat Resistant Steel Weldment (I) (내열강 용접부의 크리프 평가 신기술 개발에 관한 연구(I))

  • 유효선;백승세;권일현;이송인
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.754-761
    • /
    • 2002
  • It has been reported that the creep characteristics on weldment which is composed of weld metal(W.M), fusion line(F.L), heat-affected zone(HAZ), and base meta(B.M) could be unpredictably changed in severe service conditions such as high temperature and high pressure. However, the studies done on creep damage in power plant components have been mostly conducted on B.M and not the creep properties of the localized microstructures in weldment have been thoroughly investigated yet. In this paper, it is investigated the creep characteristics for three microstructures like coarse-grain HAZ(CGHAZ), W.M, and B.M in X20CrMoV121 steel weldment by the small punch-creep-(SP-Creep) test using miniaturized specimen($10{\times}10{\times}0.5mm$). The W.M microstructure possesses the higher creep resistance and shows lower creep strain rate than the B.M and CGHAZ. In the lower creep load the highest creep strain rate is exhibited in CGHAZ, whereas in the higher creep load the B.M represents the high creep strain rate. The power law correlation for all microstructures exists between creep rate and creep load at $600^{\circ}C$. The values of creep load index (n) based on creep strain rate for B.M, CGHAZ, and W.M are 7.54, 4.23, and 5.06, respectively and CGHAZ which shows coarse grains owing to high welding heat has the lowest creep loade index. In all creep loads, the creep life for W.M shows the highest value.

Recent Trends of Friction Stir Welding of Titanium (타이타늄 소재 마찰교반용접 기술 동향)

  • Chun, Chang-Keun;Kim, Sung-Wook;Kim, Heung-Joo;Chang, Woong-Seong;Noh, Joong-Suk
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.16-20
    • /
    • 2013
  • Titanium and its alloys have been widely using in the various field of industry application due to high corrosion resistant properties and mechanical properties. Titanium is highly reactive in the high temperature state and the formation of titanium oxide and porosities in the nuggets of fusion welding will results in the degradation of the mechanical properties. For this reason the studies of friction stir welding for titanium have been investigated recently. The FSW zones of titanium were classified by the weld nugget (WN), the linear transition boundary (TB) and the heat affected zone (HAZ). The WN along with titanium parent was characterized by the presence of twins and dislocations. The average grain size and hardness of WN has been changed according to heat input. The grain refinement resulted from the FSW increased the hardness in the stir zone. Sound dissimilar joints between SUS 304 and CP-Ti were achieved using an advancing speed of 50 mm/min and rotation speeds in the range of 700-1100 rpm. Aluminum 1060 and titanium alloy Ti-6Al-4V plates were lap joined by friction stir welding, hence the ultimate tensile shear strength of joint reached 100% of Al 1060. Mg alloy and Ti were successfully butt joined by inserting a probe into the Mg alloy plate with slightly offsetting. But Ti-Al intermetallic compound layers formed at the interface of these joints.

Optimization and High-level Expression of a Functional GST-tagged rHLT-B in Escherichia coli and GM1 Binding Ability of Purified rHLT-B

  • Ma Xingyuan;Zheng Wenyun;Wang Tianwen;Wei Dongzhi;Ma Yushu
    • Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.293-300
    • /
    • 2006
  • The Escherichia coli heat-labile enterotoxin B subunit (HLT-B) is one of the most powerful mucosal immunogens and known mucosal adjuvants. However, the induction of high levels of HLT-B expression in E. coli has proven a difficult proposition. Therefore, in this study, the HLT-B gene was cloned from pathogenic E. coli and expressed as a fusion protein with GST (glutathion S-transferase) in E. coli BL2l (DE3), in an attempt to harvest a large quantity of soluble HLT-B. The culture conditions, including the culture media used, temperature, pH and the presence of lactose as an inducer, were all optimized in order to obtain an increase in the expression of soluble GST-rHLT-B. The biological activity of the purified rHLT-B was assayed in a series of GMI-ELISA experiments. The findings of these trials indicated that the yield of soluble recombinant GST-rHLT-B could be increased by up to 3-fold, as compared with that seen prior to the optimization, and that lactose was a more efficient alternative inducer than IPTG. The production of rHLT-B, at 92 % purity, reached an optimal level of 96 mg/l in a 3.7 L fermentor. The specific GM1 binding ability of the purified rHLT-B was determined to be almost identical to that of standard CTB.

Effect of post heat treatment on fatigue properties of EBM 3D-printed Ti-6Al-4V alloy (분말 3D 프린팅된 Ti-6Al-4V 합금의 피로특성에 미치는 후열처리의 영향)

  • Choi, Young-Sin;Jang, Ji-Hoon;Kim, Gun-Hee;Lee, Chang-Woo;Kim, Hwi-Jun;Lee, Dong-Geun
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.340-345
    • /
    • 2018
  • Additive manufacturing by electron beam melting is an affordable process for fabricating near net shaped parts of titanium and its alloys. 3D additive-manufactured parts have various kinds of voids, lack of fusion, etc., and they may affect crack initiation and propagation. Post process is necessary to eliminate or minimize these defects. Hot isostatic pressing (HIP) is the main method, which is expensive. The objective of this paper is to achieve an optimum and simple post heat treatment process without the HIP process. Various post heat treatments are conducted for the 3D-printed Ti-6Al-4V specimen below and above the beta transus temperature ($996^{\circ}C$). The as-fabricated EBM Ti-6Al-4V alloy has an ${\alpha}^{\prime}$-martensite structure and transforms into the ${\alpha}+{\beta}$ duplex phase during the post heat treatment. The fatigue strength of the as-fabricated specimen is 400 MPa. The post heat treatment at $1000^{\circ}C/30min/AC$ increases the fatigue strength to 420 MPa. By post heat treatment, the interior pore size and the pore volume fraction are reduced and this can increase the fatigue limit.

Effect of Sr Substitution for RE on Microstructure and Tensile Properties in Mg-Al-RE Casting Alloys

  • Jun, Joong-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.31 no.5
    • /
    • pp.284-287
    • /
    • 2011
  • Microstructures and tensile properties at ambient and elevated temperatures were studied by substituting RE for Sr in Mg-6%Al-(3-X)%RE-X%Sr alloys (X = 0~3). With increasing Sr content, $Al_4Sr$ phase with lamellar morphology was newly introduced at interdendritic regions, with a gradual extinction of needle-shaped $Al_4RE$. The Mg-6%Al-3%Sr alloy shows dendritic grains and interdendritic eutectic phases containing bulky Mg-Al-Sr and lamellar $Al_4Sr$ with more continuous manner. The substitution of Sr for RE provided higher YS, UTS and creep resistance at $175^{\circ}C$, which indicates that Sr would be more beneficial in tensile properties and creep resistance at elevated temperature than RE for the Mg-Al based casting alloys.

An Experimental Study on Oil Effect of CO2 in Heat Pump Outdoor Heat Exchanger (CO2용 실외열교환기의 오일 영향에 따른 성능변화에 대한 실험적 연구)

  • Lee, Jin-Gwan;Chang, Young-Soo;Kim, Seo-Young;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.4
    • /
    • pp.243-250
    • /
    • 2011
  • In order to investigate the effects of PAG oil concentration on heat transfer performance and pressure drop during gas cooling process of $CO_2$, the experiments on fin-tube heat exchanger of $CO_2$ heat pump were performed. The experimental apparatus consists of a gas cooler, a heater, a chiller, a mass flow meter, a pump and measurement system. Experiments were conducted in various experimental conditions, which were inlet temperature($110^{\circ}C$), mass flow rates (50, 55, 60, 65, 70 g/s) and PAG oil concentration(0 to 2.6 wt%). Heat transfer rate decreased with the increase of the oil concentration and the decrease of inlet pressure. And pressure drop increased with the increase of the oil concentration and mass flow rate of refrigerant. The COP reduction by deterioration of gas cooler performance with oil concentration was analyzed. When inlet pressure of gas cooler is 100 bar, the COP reduction was estimated by 6% under 1 wt% of oil concentration.

Synthesis of Nanocrystalline ZnFe2O4 by Polymerized Complex Method for its Visible Light Photocatalytic Application: An Efficient Photo-oxidant

  • Jang, Jum-Suk;Borse, Pramod H.;Lee, Jae-Sung;Jung, Ok-Sang;Cho, Chae-Ryong;Jeong, Euh-Duck;Ha, Myoung-Gyu;Won, Mi-Sook;Kim, Hyun-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1738-1742
    • /
    • 2009
  • Nanocrystalline Zn$Fe_2O_4$ oxide-semiconductor with spinel structure was synthesized by the polymerized complex (PC) method and investigated for its photocatalytic and photoelectric properties. The observation of a highly pure phase and a lower crystallization temperature in Zn$Fe_2O_4$ made by PC method is in total contrast to that was observed in Zn$Fe_2O_4$ prepared by the conventional solid-state reaction (SSR) method. The band gap of the nanocrystalline Zn$Fe_2O_4$ determined by UV-DRS was 1.90 eV (653 nm). The photocatalytic activity of Zn$Fe_2O_4$ prepared by PC method as investigated by the photo-decomposition of isopropyl alcohol (IPA) under visible light (${\geq}$ 420 nm) was much higher than that of the Zn$Fe_2O_4$ prepared by SSR as well as Ti$O_{2-x}N_x$. High photocatalytic activity of Zn$Fe_2O_4$ prepared by PC method was mainly due to its surface area, crystallinity and the dispersity of platinum metal over Zn$Fe_2O_4$.

Utilization of 3D CAD and 3D Printer and UV Curavle resin Casting Defect (3D CAD, 3D 프린터 활용과 광경화수지 주물 결함)

  • Ryu, Ki-Hyu;Seo, Jin-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.3
    • /
    • pp.169-176
    • /
    • 2017
  • Casting process includes wax pattern, investment, dewaxing, curing, casting, etc., and each single process is important to achieve a good result. Since 2000, 3D printers have been developed and widely used; as more prefer UV Curavle resin method over wax method, resultant casting defects have become worse. To resolve such problem, preceding research revealed casting defects of existing wax method. In particular, defects of UV Curavle resin method showed difference in investment, dewaxing, deresinating and curing compared to the existing one. Accordingly, results were presented through casting tests; especially, a temperature rising curve only for UV Curavle resin was shown rather than one for the existing method. Lastly, this research classified those not available with direct casting and suggested mold manufacturing. This research is expected to be useful for 3D printer users or those who would conduct direct casting with UV Curavle resin.