• Title/Summary/Keyword: Fusion temperature

Search Result 654, Processing Time 0.024 seconds

GEOMETRICAL EFFECTS ON THERMAL-HYDRAULIC PERFORMANCE OF A MULTIPLE JET IMPINGEMENT COOLING SYSTEM IN A DIVERTOR OF NUCLEAR FUSION REACTOR (핵융합로 디버터 다중충돌제트 냉각시스템의 형상변화가 열수력학적 특성에 미치는 영향)

  • Jung, H.Y.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.26-36
    • /
    • 2017
  • A numerical study has been performed to evaluate thermal-hydraulic performance of a finger type cooling module with multiple-jet impingement in a divertor of nuclear fusion reactor. To analyze conjugate heat transfer in both solid and fluid domains, numerical analysis of the flow using three-dimensional Reynolds-averaged Navier-Stokes equations has been performed with shear stress transport turbulence model. The computational domain for the cooling module consisted of a single fluid domain and three solid domains; tile, thimble, and cartridge. The numerical results for the temperature variation on the tile were validated in comparison with experimental data under the same conditions. A parametric study was performed with four geometric parameters, i.e., angles between x-axis and centerlines of hole 1, 2, 3 and 4. The results indicate that the heat transfer rate was increased by 2.7% and 0.7% by the angle ${\theta}_1$ and angle ${\theta}_2$, respectively, and that the pressure drop was decreased by up to 1.8% by the angle ${\theta}_3$.

A Characteristic Study of Low Cycle Fatigue for Rolled STS 304 Steel (STS 304 압연강의 저주기 피로특성에 관한 연구)

  • Kim, C.H.;Park, Y.M.;Bae, M.K.;Kim, H.S.;Kim, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.1
    • /
    • pp.18-23
    • /
    • 2018
  • In this study, low cyclic fatigue test was carried out at room temperature condition for rolled STS304 steel. The results of this study show that rolled STS304 steel has excellent static tensile strength and fatigue characteristics. The relationship between plastic strain range and fatigue life was examined using the triangular wave in order to predict the low cycle fatigue life of rolled STS304 steel by Coffin-Manson equation. Cyclic behavior of rolled STS304 steel was characterized by cyclic hardening with increasing number of cycle through the Hysteresis loop analysis and cyclic response of maximum stress versus number of cycles. It is found that the plastic deformation energy consumed per cycle is reduced by calculating the area of the hysteresis loop.

NEW SPECTROSCOPIC METHODS FOR THE SIMULTANEOUS ESTIMATION OF FUNDAMENTAL ATMOSPHERIC PARAMETERS USING THE LINE DEPTH RATIOUS

  • Kim, Chul-Hee;Moon, B.K.;Lee, I.H.
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.2
    • /
    • pp.25-29
    • /
    • 2012
  • New methods are developed to estimate the effective temperature (Te), surface gravity (log g), and metallicity ([A/H]) simultaneously with the spectral line depth ratios. Using the model atmosphere grids, depth values are calculated for the wavelength range of $4000{\AA}-5600{\AA}$ for various temperatures, gravities, and metallicities. All possible different combinations of line depth ratios for different pairs of ratios are investigated. A graphical 3D figure is produced with X, Y, and Z axes corresponding to Te, log g, and [A/H], respectively. By reading a cross point of two curves plotted by a connection of three parameters obtained from spectral line depth ratio pairs on each of the three projected planes, Te, log g, and [A/H] are determined simultaneously. In addition, an analytical method is devised based on the similar algorithm developed for the graphical method. Our methods were applied to estimate the fundamental atmospheric parameters of the Sun and Arcturus.

Conditions for Intergeneric Protoplast Fusion of Yeast (효모의 이속간 원형질체 융합조건)

  • Kim, Young-Ho;Seu, Jung-Hwn
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.4
    • /
    • pp.383-389
    • /
    • 1985
  • Optimum conditions of PEG treatment for the intergeneric fusion of yeast protoplasts were investigated. Fusants were selected by nutritional complementation on minimal medium. The intergeneric fusion frequency between pro-toplasts of S. cerevisiae and C. tropicalis was distributed 10$^{-4}$ to 10$^{-6}$, depending on the combination of parental strains. PEG 4000 or 6000 are equally effective. 30%(w/v) PEG 4000 was found to be optimum and below 20% its stabilizing effect was lost, resulting in protoplast lysis, and optimum pH was 8.0. The efficiency of PEG was enhanced by higher temperature of the PEG solution, and by the addition of Ca ions. The stimulating effect of Ca ions in the range of 1 mM to 100 mM proved similar.

  • PDF

Biophysical Effects Simulated by an Ocean General Circulation Model Coupled with a Biogeochemical Model in the Tropical Pacific

  • Park, Hyo-Jin;Moon, Byung-Kwon;Wie, Jieun;Kim, Ki-Young;Lee, Johan;Byun, Young-Hwa
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.469-480
    • /
    • 2017
  • Controversy has surrounded the potential impacts of phytoplankton on the tropical climate, since climate models produce diverse behaviors in terms of the equatorial mean state and El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) amplitude. We explored biophysical impacts on the tropical ocean temperature using an ocean general circulation model coupled to a biogeochemistry model in which chlorophyll can modify solar attenuation and in turn feed back to ocean physics. Compared with a control model run excluding biophysical processes, our model with biogeochemistry showed that subsurface chlorophyll concentrations led to an increase in sea surface temperature (particularly in the western Pacific) via horizontal accumulation of heat contents. In the central Pacific, however, a mild cold anomaly appeared, accompanying the strengthened westward currents. The magnitude and skewness of ENSO were also modulated by biophysical feedbacks resulting from the chlorophyll affecting El $Ni{\tilde{n}}o$ and La $Ni{\tilde{n}}a$ in an asymmetric way. That is, El $Ni{\tilde{n}}o$ conditions were intensified by the higher contribution of the second baroclinic mode to sea surface temperature anomalies, whereas La $Ni{\tilde{n}}a$ conditions were slightly weakened by the absorption of shortwave radiation by phytoplankton. In our model experiments, the intensification of El $Ni{\tilde{n}}o$ was more dominant than the dampening of La $Ni{\tilde{n}}a$, resulting in the amplification of ENSO and higher skewness.

A Feasible Study for the Usage of Sludge in Coal Mine Drainage as a Briquette Additive (석탄광산 배수슬러지의 연탄첨가물로서의 타당성 연구)

  • Oh, Sae-Gang;Park, Chan-Ho;Kwak, Yong-Wan;Lee, Young-Jae;Lee, Hyun-Ju;Shim, Yon-Sik;Kwon, Hyun-Ho;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.72-80
    • /
    • 2010
  • Possibility of the usage of sludge generated in coal mine drainage treatments as a briquette additive was investigated by the combination of industrial, elemental, and combustion experiments. A series of briquettes having 2% and 6% of sludge were used for the experiments. Compared to the control sample, our results show that all experimental values for the briquettes are very similar. In particular, it is worthy to note that there is no obvious difference in calorific values for the briquettes containing 2% or 6% of sludge. The calorific values are 4,250~4,360 kcal/kg, 4,240~4,250 kcal/kg, 4,180~4,210 kcal/kg, and 4,270~4,360 kcal/kg for the control sample, briquette containing 6% of Hambaek sludge, briquette containing 6% of Hamtae sludge, and briquette containing 2% of Hambaek sludge, respectively. Results of ash fusion temperature show that the temperature is greater than $1,550^{\circ}C$ for the control sample. However, the temperature for the briquettes with 6% of Hambaek sludge and 2% of Hambaek or Hamtae sludge is $1,510^{\circ}C$. For a briquette containing 6% of Hamtae sludge, the temperature of ash fusion is $1,530^{\circ}C$. After combustion, environmental impacts of the briquettes with sludge were tested. Little environmental influence was observed for the combusted briquettes with sludge.

Generation of Land Surface Temperature Orthophoto and Temperature Accuracy Analysis by Land Covers Based on Thermal Infrared Sensor Mounted on Unmanned Aerial Vehicle (무인항공기에 탑재된 열적외선 센서 기반의 지표면 온도 정사영상 제작 및 피복별 온도 정확도 분석)

  • Park, Jin Hwan;Lee, Ki Rim;Lee, Won Hee;Han, You Kyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.263-270
    • /
    • 2018
  • Land surface temperature is known to be an important factor in understanding the interactions of the ground-atmosphere. However, because of the large spatio-temporal variability, regular observation is rarely made. The existing land surface temperature is observed using satellite images, but due to the nature of satellite, it has the limit of long revisit period and low accuracy. In this study, in order to confirm the possibility of replacing land surface temperature observation using satellite imagery, images acquired by TIR (Thermal Infrared) sensor mounted on UAV (Unmanned Aerial Vehicle) are used. The acquired images were transformed from JPEG (Joint Photographic Experts Group) to TIFF (Tagged Image File Format) format and orthophoto was then generated. The DN (Digital Number) value of orthophoto was used to calculate the actual land surface temperature. In order to evaluate the accuracy of the calculated land surface temperature, the land surface temperature was compared with the land surface temperature directly observed with an infrared thermometer at the same time. When comparing the observed land surface temperatures in two ways, the accuracy of all the land covers was below the measure accuracy of the TIR sensor. Therefore, the possibility of replacing the satellite image, which is a conventional land surface temperature observation method, is confirmed by using the TIR sensor mounted on UAV.

A Study on Analysis of Heat Flow in Laser Brazing (레이저 브레이징에서의 열유동 해석에 관한 연구)

  • 전민규;김원배;한국찬;나석주
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.96-105
    • /
    • 1995
  • An advantage offered by brazing over fusion welding is that strong joints may be produced at relatively low heat input. To minimize the thermal effects and maintain the desired dimension of assemblies. the CO$_{2}$ laser beam can be applied to the brazed joint of pin and plate as a micro heat source. This paper presents a analysis model of the laser brazing process considering the laser beam mode and heat flow in brazed parts by using the finite element method. The simulation results were compared with the experimental results obtained from the infrared temperature sensing system. Based on these results, the proper process parameters were investigated to get a good joining quality. The influence of the beam mode change was examined with respect to the temperature distribution and joint quality.

  • PDF

Effect of base metal and welding heat input on the properties of low temperature steel welds made by Electro Gas Welding (저온용 강재 Electro Gas 용접부 물성에 미치는 모재와 용접 입열의 영향)

  • Sung, Hee-Joon;Goo, Yeon-Baeg;Kim, Kyeong-Ju
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.51-51
    • /
    • 2009
  • In order to understand the properties of high heat input welds made by electro gas welding, two kinds of low temperature steel were welded. Welding heat inputs were controlled by width of root gap and ranged from 118 to 143kJ/cm. Chemical composition and micro-structural analysis were performed. To understand low temperature impact properties, Charpy impact test was conducted at several temperatures. The results were summarized as follows; 1) Grain size of weld metal and heat affected zone was increased with an increase in welding heat input. 2) Impact test values at fusion line were severely fluctuated regardless of base metals, showing enormous difference among the values at the same test temperature.

  • PDF

A Study on Estimation of Cooling Load Using Forecasted Weather Data (기상 예보치를 이용한 냉방부하 예측 기법에 관한 연구)

  • Han, Kyu-Hyun;Yoo, Seong-Yeon;Lee, Je-Myo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.937-942
    • /
    • 2008
  • In this paper, new methodology is proposed to estimate the cooling load using design parameters of building and predicted weather data. Only two parameters such as maximum and minimum temperature are necessary to obtain hourly distribution of cooling load for the next day. The maximum and minimum temperature that are used for input parameters can be obtained from forecasted weather data. Benchmarking building(research building) is selected to validate the performance of the proposed method, and the estimated cooling loads in hourly bases are calculated and compared with the measured data for benchmarking building. The estimated results show fairly good agreement with the measured data for benchmarking building.

  • PDF