• Title/Summary/Keyword: Fusion pore

Search Result 37, Processing Time 0.026 seconds

The Effect of Pore Sizes on Poly(L-lactide-co-glycolide) Scaffolds for Annulus Fibrosus Tissue Regeneration (조직공학적 섬유륜재생을 위한 PLGA 지지체 제조시 다공크기의 영향에 관한 연구)

  • So, Jeong-Won;Jang, Ji-Wook;Kim, Soon-Hee;Choi, Jin-Hee;Rhee, John-M.;Min, Byung-Hyun;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.516-522
    • /
    • 2008
  • Biodegradable polymers have been used extensively as scaffolding materials to regenerate new tissues and the ingrowth of tissue have been reported to be dependent directly of the porosity, pore diameter, pore shape, and porous structure of the scaffold. In this study, porous poly (L-lactide-co-glycolide) (PLGA) scaffolds with five different pore sizes were fabricated to investigate the effect of pore sizes for AF tissue regeneration. Cellular viability and proliferation were assayed by MTT test. Hydroxyproline/DNA content of AF cells on each scaffold was measured. sGAG analyses were performed at each time point of 2 and 6 weeks. Scaffold seeded AF cells were implanted into the back of athymic nude mouse to observe the difference of formation of disc-like tissue depending on pore size in vivo. We confirmed that scaffold with $180{\sim}250{\mu}m$ pores displayed high cell viability in vitro and produced higher ECM than scaffold with other pore sizes in vivo.

Correlation between mEPSC Amplitude and Rise Time upon the Blockade of AMPA Receptor Desensitization at Hippocampal Synapses

  • Jung, Su-Hyun;Choi, Suk-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.2
    • /
    • pp.81-85
    • /
    • 2002
  • Conventional views of synaptic transmission generally overlook the possibility of 'postfusional-control' the regulation of the speed or completeness of transmitter release upon vesicular fusion. However, such regulation often occurs in non-neuronal cells where the dynamics of fusion-pore opening is critical for the speed of transmitter release. In case of synapses, the slower the transmitter release, the smaller the size and rate-of-rise of postsynaptic responses would be expected if postsynaptic neurotransmitter receptors were not saturated. This prediction was tested at hippocampal synapses where postsynaptic AMPA-type glutamate receptors (AMPAR) were not generally saturated. Here, we found that the small miniature excitatory postsynaptic currents (mEPSCs) showed significantly slower rise times than the large mEPSCs when the sucrose-induced mEPSCs recorded in cyclothiazide (CTZ), a blocker for AMPAR desensitization, were sorted by size. The slow rise time of the small mEPSCs might result from slow release through a non-expanding fusion pore, consistent with postfusional control of neurotransmitter release at central synapses.

Synthesis and Surface Characterization of Transition Metal Doped Mesoporous Silica Catalysts for Decomposition of N2O (N2O 분해를 위한 전이금속이 도핑된 메조포러스 실리카 촉매의 합성과 표면 특성에 관한 연구)

  • Lee, Kamp-Du;Noh, Min-Soo;Park, Sang-Won
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.787-795
    • /
    • 2012
  • The purpose of this study is to synthesize transition metal doped mesoporous silica catalyst and to characterize its surface in an attempt to decomposition of $N_2O$. Transition metal used to surface modification were Ru, Pd, Cu and Fe concentration was adjusted to 0.05 M. The prepared mesoporous silica catalysts were characterized by X-ray diffraction, BET surface area, BJH pore size, Scanning Electron Microscopy and X-ray fluorescence. The results of XRD for mesoporous silica catalysts showed typical the hexagonal pore system. BET results showed the mesoporous silica catalysts to have a surface area of 537~973 $m^2/g$ and pore size of 2~4 nm. The well-dispersed particle of mesoporous silica catalysts were observed by SEM, the presence and quantity of transition metal loading to mesoporous surface were detected by XRF. The $N_2O$ decomposition efficiency on mesoporous silica catalysts were as follow: Ru>Pd>Cu>Fe. The results suggest that transition metal doped mesoporous silica is effective catalyst for decomposition of $N_2O$.

An experimental study on the preparation and property of the sintering aggregate using fly ash (플라이애쉬를 이용한 소성골재의 제조 및 특성에 관한 연구)

  • 박대영;김도수;박종현;임채영;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.239-244
    • /
    • 1998
  • Fusion temperature of fly ash was determined with wasted glass wool and borax using ash fusion determinator, 0.5wt% of bentonite and water glass used as binder, 50wt% of wasted glass wool added to fly ash, fusion temperature of fly ash was 1, 156$^{\circ}C$. Pellet was prepared, and then sintered at 1, 00$0^{\circ}C$ and 1, 10$0^{\circ}C$. Water-absorption rate, specific gravity, porosity and pore structure of sintering aggregate was determined.

  • PDF

Formation of Sieve Element Area and Sieve Pore in Suspension Cultures of Streptanthus tortus (Streptanthus tortus 조직배양 세포에서 사부 영역과 사공의 형성)

  • 조봉희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.2
    • /
    • pp.109-112
    • /
    • 2001
  • Sieve element area and sieve pore formed generally from plasmodesmata. Sieve pore formed by the fusion of several tiny vesicles with plasmodesmata, or those with cell wall after the destruction of special region of newly formed cell wall or those finally with circular arranged form from tissure culture of Streptanthus. The tiny vesicles were produced from dispersed nucleolus or heterochromatin. The sieve area and sieve pore formed from tissue cultured cells were shown round tube form similar to those of natural plants. Sieve area and sieve pore were produced by various methods, and it suggested that the basic materials of the construction of sieve pore originated from the vesicles.

  • PDF

A Study on the Synthesis and Electrochemical Characteristics of Carbonized Coffee Powder for Use as a Lithium-Ion Battery Anode (리튬 이온 이차전지 음극 활물질용 탄화 커피 분말 제조 및 전기화학적인 특성연구)

  • Kim, Tae Gyun;Cho, Jin Hyuk;Pham-Cong, De;Jeon, Injun;Hwang, Jin Hyun;Kim, Kyoung Hwa;Cho, Chae Ryong
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1315-1323
    • /
    • 2018
  • We studied the carbonization due to the annealing condition of waste coffee powder for application as an active anode material for lithium-ion batteries (LIBs). The coffee powder used as an active anode material for LIBs was obtained from coffee beans, not from a coffee shells. The waste coffee powder was dried in air and heat-treated in an $Ar/H_2$ atmosphere to obtain a pore-forming activated carbon powder. The specific capacity of the sample annealed at $700^{\circ}C$ was still 303 mAh/g after 1000 cycles at a current density of 1000 mA/g and with a coulombic efficiency of over 99.5%. The number of pores and the pore size of the waste coffee powder were increased due to chemical treatment with KOH, which had the some effect as an increased specific surface area. The waste coffee powder is considered to be a very promising active anode material because of both its excellent electrochemical properties due to enhanced carrier conduction and its being a cost effective resource for use in LIBs.

On-line Measurement and Characterization of Nano-web Qualities Using a Stochastic Sensor Fusion System Design and Implementation of NAFIS(NAno-Fiber Information System)

  • Kim, Joovong;Lim, Dae-Young;Byun, Sung-Weon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.45-46
    • /
    • 2003
  • A process control system has been developed for measurement and characterization of the nanofiber web qualities. The nano-fiber information system (NAFIS) developed consists of a measurement device and an analysis algorithm, which are a microscope-laser sensor fusion system and a process information system, respectively. It has been found that NAFIS is so successful in detecting irregularities of pore and diameter that the resulting product has been quitely under control even at the high production rate. Pore distribution, fiber diameter and mass uniformity have been readily measured and analyzed by integrating the non-contact measurement technology and the random function-based time domain signal/image processing algorithm. Qualifies of the nano-fiber webs have been revealed in a way that the statistical parameters for the characteristics above are calculated and stored in a certain interval along with the time-specific information. Quality matrix, scale of homogeneity is easily obtained through the easy-to-use GUI information. Finally, ANFIS has been evaluated both for the real-time measurement and analysis, and for the process monitoring.

  • PDF

Controlled Release of Nifedipine in Multi-layered Granule System (다중층 과립 시스템에서 니페디핀의 방출 제어)

  • Lee, Soo-Young;Youn, Ju-Yong;Kim, Byung-Soo;Kim, Moon-Suk;Lee, Bong;Khang, Gil-Son;Lee, Hai-Bang
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.4
    • /
    • pp.229-235
    • /
    • 2007
  • Multi-layered granules were prepared by a fluidized-bed coater and uniformed granules were obtained with a size range between $950{\sim}1000{\mu}m$ in diameter. The granule system was composed of three layers, i.e. seed layer with sugar sphere bead and a water-swellable polymer, middle layer with a drug, solubilizer and polymer, and the top layer of porous membrane with a polymeric binder. The aim of this work is to find out the dependence of a drug dissolution rate on the amount of a water-soluble binder and a solubilizer in the granule system. The results showed that the higher amount of hydrophilic binder in the porous membrane, gave the bigger pore size and porosity and made faster dissolution rate and also the higher amount of solubilizer in drug layer enhanced the dissolution rate of drug.

Effects of pore structures on electrochemical behaviors of polyacrylonitrile-based activated carbon nanofibers by carbon dioxide activation

  • Lee, Hye-Min;Kim, Hong-Gun;An, Kay-Hyeok;Kim, Byung-Joo
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.71-76
    • /
    • 2014
  • Activated carbon nanofibers (ACNF) were prepared from polyacrylonitrile (PAN)-based nanofibers using $CO_2$ activation methods with varying activation process times. The surface and structural characteristics of the ACNF were observed by scanning electron microscopy and X-ray diffraction, respectively. $N_2$ adsorption isotherm characteristics at 77 K were confirmed by Brunauer-Emmett-Teller and Dubinin-Radushkevich equations. As experimental results, many holes or cavernous structures were found on the fiber surfaces after the $CO_2$ activation as confirmed by scanning electron microscopy analysis. Specific surface areas and pore volumes of the prepared ACNFs were enhanced within a range of 10 to 30 min of activation times. Performance of the porous PAN-based nanofibers as an electrode for electrical double layer capacitors was evaluated in terms of the activation conditions.

Release behavior of embedding materials on the porous Ti implants (다공성 티타늄 임플란트의 담지물질 방출거동)

  • Kim, Yung-Hoon;Kim, Nam-Joong
    • Journal of Technologic Dentistry
    • /
    • v.36 no.3
    • /
    • pp.179-184
    • /
    • 2014
  • Purpose: This study was performed to investigate the release behavior of bioactive materials as a BMP-2 embedding on the porous titanium implant. Methods: Porous Ti implant samples were fabricated by sintering of spherical Ti powders in a high vacuum furnace. Specimens diameter and height were 4mm and 10mm. Embedding materials were used to stamp ink. Sectional images, porosity and release behavior of porous Ti implants were evaluated by scanning electron microscope(SEM), mercury porosimeter and UV-Vis-NIR spectrophotometer. Results: Internal pore structure was formed fully open pore. Average pore size and porosity were $8.993{\mu}m$ and 8.918%. Embedding materials were released continually and slowly. Conclusion: Porous Ti implant was fabricated successfully by sintering method. Particles are necking strongly each other and others portions were vacancy. Therefore bioactive materials will be able to embedding to porous Ti implants. If the development of the fusion implant of the bioactive material will be able to have the chance to several patients.