• Title/Summary/Keyword: Fusion materials

Search Result 803, Processing Time 0.051 seconds

A flexible, full-color OTFT-OLED display

  • Yagi, I.;Hirai, N.;Miyamoto, Y.;Noda, M.;Imaoka, A.;Yasuda, R.;Yoneya, N.;Nomoto, K.;Yumoto, A.;Kasahara, J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1627-1630
    • /
    • 2008
  • We have demonstrated a flexible and full-color OTFT-OLED display. The display has a top-emitting pixel structure with a resolution of 80 ppi, which can be achieved by developed integration architecture of OTFTs. The 0.3-mm-thick flexible display exhibits peak brightness over 100 nit with a contrast ratio greater than 1000:1.

  • PDF

Research on Powder Metallurgy Technology in Fusion Materials in China

  • Ge, Chang-Chun;Zhou, Zhang-Jian;Du, Juan;Song, Shu-Xiang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.896-897
    • /
    • 2006
  • In the viewpoint of engineering, materials problem is a key problem, which determines whether the exploitation of fusion energy will be success. The most important class of fusion materials is plasma-facing materials (PFM). W, as high Z high melting-point metal is one of the most important candidate materials due to its high plasma erosion resistance. Improving the ductility of W and W based alloy, lowering its ductile-brittleness transition temperature for meeting the requirements of fusion application is an important task. In this paper, severalpowder meatllurgy methods of fabricating W and W based materials are being investigated.

  • PDF

Functional Li-M (Ti, Al, Co, Ni, Mn, Fe)-O Energy Materials

  • Kim, In Yea;Shin, Seo Yoon;Ko, Jea Hwan;Lee, Kang Soo;Woo, Sung Pil;Kim, Dong Kyu;Yoon, Young Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.9-22
    • /
    • 2017
  • Many new functional materials have been studied for efficient production and storage of energy. Many new materials such as sodium-based and sulfide-based materials have been proposed for energy storage, but research on Li batteries is still dominant. Due to the influence of environmental concerns regarding nuclear energy, interest in and research on fusion power are steadily increasing. For the commercialization of nuclear fusion, a design standard based on a considerable level of physical analysis and modeling is proposed. Nevertheless, limitations of existing materials in nuclear fusion environments limit practical applications. Tritium propagation material for continuous fusion reaction is one of the core materials, and therefore research on this material is being carried out intermittently. The key material for Li-based energy storage and tritium generation is the functional material Li-M-O. In this review, a structural description of functional Li-M-O system materials and technical trends for its applications are introduced.

FUSION MATERIALS AND FUSION ENGINEERING R&D IN JAPAN

  • KOHYAMA A.;KONISHI S.;KIMURA A.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.423-432
    • /
    • 2005
  • Japanese activities on fusion structural materials R&D have been well organized under the coordination of university programs and JAERI/NIMS programs more than two decades. Where, two categories of structural materials have been studied, those are; reduced activation martensitic/ferritic steels (RAFs) as reference material and vanadium alloys and SiC/SiC composite materials as advanced materials. The R&D histories of these candidate materials and the present status in Japan are reviewed with the emphasis on materials behavior under radiation damage. The importance of IFMIF and technology development for blanket R&D including ITER-TBRG activity is emphasized and the current status of those activities in Japan is also presented.

Application and Technology on Development of High Temperature Structure SiCf/SiC Composite Materials (고온용 SiCf/SiC 복합재료개발 기술과 활용방향)

  • Yoon, Han-Ki;Lee, Young-Ju;Park, Yi-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.1016-1021
    • /
    • 2008
  • The development of the first wall whose major function is to withstand high neutron and heat fluxes is a critical path to fusion power. The materials database and the fabrication technology are being developed for design, construction and safety operation of the fusion reactor. The first wall was designed to consist of the plasma facing armor, the heat sink layer and the supporting plates. and Porous materials are of significant interest due to their wide applications in catalysis, separation, lightweight structural materials. In this study, the characteristics of the sintering process of SiC ceramic, $SiC_f$/SiC composite and porous $C_f$/SiC composite have been introduced order to study of the fusion blanket materials and heat-exchange pannel.

Effective Control of CH4/H2 Plasma Condition to Synthesize Graphene Nano-walls with Controlled Morphology and Structural Quality

  • Park, Hyun Jae;Shin, Jin-ha;Lee, Kang-il;Choi, Yong Sup;Song, Young Il;Suh, Su Jeong;Jung, Yong Ho
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.179-183
    • /
    • 2017
  • The direct growth method is simplified manufacturing process used to avoid damages and contaminants from the graphene transfer process. In this paper, graphene nano-walls (GNWs) were direct synthesized using electron cyclotron resonance (ECR) plasma by varying the $CH_4/H_2$ gas flow rate on the copper foil at low temperature (without substrate heater). Investigations were carried out of the changes in the morphology and characteristic of GNWs due to the relative intensity of hydrocarbon radical and molecule in the ECR plasma. The results of these investigations were then discussed.

Effect of Bulk Shape on Mechanical Properties of Ti-6Al-4V Alloy Manufactured by Laser Powder Bed Fusion (Laser Powder Bed Fusion 공정으로 제조된 Ti-6Al-4V 합금의 형상 차이에 따른 기계적 특성 변화)

  • Haeum Park;Yeon Woo Kim;Seungyeon Lee;Kyung Tae Kim;Ji-Hun Yu;Jung Gi Kim;Jeong Min Park
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.140-145
    • /
    • 2023
  • Although the Ti-6Al-4V alloy has been used in the aircraft industry owing to its excellent mechanical properties and low density, the low formability of the alloy hinders broadening its applications. Recently, laser-powder bed fusion (L-PBF) has become a novel process for overcoming the limitations of the alloy (i.e., low formability), owing to the high degree of design freedom for the geometry of products having outstanding performance used in high-tech applications. In this study, to investigate the effect of bulk shape on the microstructure and mechanical properties of L-PBFed Ti-6Al-4V alloys, two types of samples are fabricated using L-PBF: thick and thin samples. The thick sample exhibits lower strength and higher ductility than the thin sample owing to the larger grain size and lower residual dislocation density of the thick sample because of the heat input during the L-PBF process.