• 제목/요약/키워드: Fusion boundary

검색결과 125건 처리시간 0.025초

Predictive Spatial Data Fusion Using Fuzzy Object Representation and Integration: Application to Landslide Hazard Assessment

  • Park, No-Wook;Chi, Kwang-Hoon;Chung, Chang-Jo;Kwon, Byung-Doo
    • 대한원격탐사학회지
    • /
    • 제19권3호
    • /
    • pp.233-246
    • /
    • 2003
  • This paper presents a methodology to account for the partial or gradual changes of environmental phenomena in categorical map information for the fusion/integration of multiple spatial data. The fuzzy set based spatial data fusion scheme is applied in order to account for the fuzziness of boundaries in categorical information showing the partial or gradual environmental impacts. The fuzziness or uncertainty of boundary is represented as two kinds of fuzzy membership functions based on fuzzy object concept and the effects of them are quantitatively evaluated with the help of a cross validation procedure. A case study for landslide hazard assessment demonstrates the better performance of this scheme as compared to traditional crisp boundary representation.

정맥패턴 융합을 위한 Boundary Stitching Algorithm (Boundary Stitching Algorithm for Fusion of Vein Pattern)

  • 임영규;장경식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 춘계학술발표대회
    • /
    • pp.521-524
    • /
    • 2005
  • This paper proposes a fusion algorithm which merges multiple vein pattern images into a single image, larger than those images. As a preprocessing step of template matching, during the verification of biometric data such as fingerprint image, vein pattern image of hand, etc., the fusion technique is used to make reference image larger than the candidate images in order to enhance the matching performance. In this paper, a new algorithm, called BSA (Boundary Stitching Algorithm) is proposed, in which the boundary rectilinear parts extracted from the candidate images are stitched to the reference image in order to enlarge its matching space. By applying BSA to practical vein pattern verification system, its verification rate was increased by about 10%.

  • PDF

원전 이종금속 용접부의 장기 열적 시효에 따른 미세조직 및 기계적 특성변화에 관한 고찰 (A study on the change of microstructural and mechanical properties by the long-term thermal aging of dissimilar metal welds in nuclear power plants)

  • 최경준;유승창;김지현
    • 한국압력기기공학회 논문집
    • /
    • 제10권1호
    • /
    • pp.82-89
    • /
    • 2014
  • In this study, the metallurgical analysis and mechanical property measurement have been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at $450^{\circ}C$ for 2,750 hours. The microstructural characterization was conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy. And the mechanical properties were measured with Vickers microhardness test and nanoindentation method. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. Type-II boundaries were found in weld side of DMW and the hardness was the highest at the narrow zone between Type-II boundary and fusion boundary.

노치위치에 따른 Narrow Gap 용접부의 인성변화 (Effect of notch location on the toughness of narrow gap weldment)

  • 김희진;신민태;원정규
    • Journal of Welding and Joining
    • /
    • 제4권1호
    • /
    • pp.40-46
    • /
    • 1986
  • This investigation studied the toughness variations in the narrow gap weldment with the notch location. Specimens with the notch at the center of the weld metal showed the lowest toughness. As the location of notchmoves to fusion line, the impact properties improve reaching a maximum at the fusion boundaries. This improvement in toughness can be explained by the microstructural feature showing in the narrow gap weldment. "one pass/layer" technique performed in narrow gap welding results in the increased proportion of refined structure as approaching to fusion boundary from weld center and thus leave 100% refined structure along the fusion boundary. HAZ also shows 100% refined structure with respect to base metal structure accompanied with the significant suppression of ductile-brittle transition temperature.mperature.

  • PDF

THREE DIMENSIONAL ATOM PROBE STUDY OF NI-BASE ALLOY/LOW ALLOY STEEL DISSIMILAR METAL WELD INTERFACES

  • Choi, Kyoung-Joon;Shin, Sang-Hun;Kim, Jong-Jin;Jung, Ju-Ang;Kim, Ji-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제44권6호
    • /
    • pp.673-682
    • /
    • 2012
  • Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multi-component metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

Effects of Uncertain Spatial Data Representation on Multi-source Data Fusion: A Case Study for Landslide Hazard Mapping

  • Park No-Wook;Chi Kwang-Hoon;Kwon Byung-Doo
    • 대한원격탐사학회지
    • /
    • 제21권5호
    • /
    • pp.393-404
    • /
    • 2005
  • As multi-source spatial data fusion mainly deal with various types of spatial data which are specific representations of real world with unequal reliability and incomplete knowledge, proper data representation and uncertainty analysis become more important. In relation to this problem, this paper presents and applies an advanced data representation methodology for different types of spatial data such as categorical and continuous data. To account for the uncertainties of both categorical data and continuous data, fuzzy boundary representation and smoothed kernel density estimation within a fuzzy logic framework are adopted, respectively. To investigate the effects of those data representation on final fusion results, a case study for landslide hazard mapping was carried out on multi-source spatial data sets from Jangheung, Korea. The case study results obtained from the proposed schemes were compared with the results obtained by traditional crisp boundary representation and categorized continuous data representation methods. From the case study results, the proposed scheme showed improved prediction rates than traditional methods and different representation setting resulted in the variation of prediction rates.

다중 신경회로망을 이용한 특징정보 융합과 적외선영상에서의 표적식별에의 응용 (Feature information fusion using multiple neural networks and target identification application of FLIR image)

  • 선선구;박현욱
    • 대한전자공학회논문지SP
    • /
    • 제40권4호
    • /
    • pp.266-274
    • /
    • 2003
  • 전방 관측 적외선 영상에서 가려짐이 없는 표적과 부분적으로 가려진 표적을 식별하기 위해 국부적 표적 경계선에 대한 거리함수의 푸리에기술자와 다중의 다층 퍼셉트론을 사용한 특징정보 융합 방법을 제안한다. 표적을 배경으로부터 분리한 후에 표적 경계선의 중심을 기준으로 푸리에 기술자를 구해 전역적 특징으로 사용한다. 국부적인 형상 특징을 찾기 위해 표적 경계선을 분할하여 4개의 국부적 경계선을 만들고, 각 국부적 경계선에서 두 개의 극단점이 이루는 직선과 경계선 픽셀로부터 거리함수를 정의한다. 거리함수에 대한 푸리에 기술자를 국부적 형상특징으로 사용한다. 1개의 광역적 특징 백터와 4개의 국부적 특징 백터를 정의하고 다중의 다층 퍼셉트론을 사용하여 특징정보들을 융합함으로써 최종 표적식별 결과를 얻는다. 실험을 통해 기존의 특징벡터들에 의한 표적식별 방법과 비교하여 제안한 방법의 우수성을 입증한다.

X-Ray Image Enhancement Using a Boundary Division Wiener Filter and Wavelet-Based Image Fusion Approach

  • Khan, Sajid Ullah;Chai, Wang Yin;See, Chai Soo;Khan, Amjad
    • Journal of Information Processing Systems
    • /
    • 제12권1호
    • /
    • pp.35-45
    • /
    • 2016
  • To resolve the problems of Poisson/impulse noise, blurriness, and sharpness in degraded X-ray images, a novel and efficient enhancement algorithm based on X-ray image fusion using a discrete wavelet transform is proposed in this paper. The proposed algorithm consists of two basics. First, it applies the techniques of boundary division to detect Poisson and impulse noise corrupted pixels and then uses the Wiener filter approach to restore those corrupted pixels. Second, it applies the sharpening technique to the same degraded X-ray image. Thus, it has two source X-ray images, which individually preserve the enhancement effects. The details and approximations of these sources X-ray images are fused via different fusion rules in the wavelet domain. The results of the experiment show that the proposed algorithm successfully combines the merits of the Wiener filter and sharpening and achieves a significant proficiency in the enhancement of degraded X-ray images exhibiting Poisson noise, blurriness, and edge details.

FS-Transformer: A new frequency Swin Transformer for multi-focus image fusion

  • Weiping Jiang;Yan Wei;Hao Zhai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권7호
    • /
    • pp.1907-1928
    • /
    • 2024
  • In recent years, multi-focus image fusion has emerged as a prominent area of research, with transformers gaining recognition in the field of image processing. Current approaches encounter challenges such as boundary artifacts, loss of detailed information, and inaccurate localization of focused regions, leading to suboptimal fusion outcomes necessitating subsequent post-processing interventions. To address these issues, this paper introduces a novel multi-focus image fusion technique leveraging the Swin Transformer architecture. This method integrates a frequency layer utilizing Wavelet Transform, enhancing performance in comparison to conventional Swin Transformer configurations. Additionally, to mitigate the deficiency of local detail information within the attention mechanism, Convolutional Neural Networks (CNN) are incorporated to enhance region recognition accuracy. Comparative evaluations of various fusion methods across three datasets were conducted in the paper. The experimental findings demonstrate that the proposed model outperformed existing techniques, yielding superior quality in the resultant fused images.