• Title/Summary/Keyword: Fusion application

Search Result 625, Processing Time 0.025 seconds

Predictive Spatial Data Fusion Using Fuzzy Object Representation and Integration: Application to Landslide Hazard Assessment

  • Park, No-Wook;Chi, Kwang-Hoon;Chung, Chang-Jo;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.233-246
    • /
    • 2003
  • This paper presents a methodology to account for the partial or gradual changes of environmental phenomena in categorical map information for the fusion/integration of multiple spatial data. The fuzzy set based spatial data fusion scheme is applied in order to account for the fuzziness of boundaries in categorical information showing the partial or gradual environmental impacts. The fuzziness or uncertainty of boundary is represented as two kinds of fuzzy membership functions based on fuzzy object concept and the effects of them are quantitatively evaluated with the help of a cross validation procedure. A case study for landslide hazard assessment demonstrates the better performance of this scheme as compared to traditional crisp boundary representation.

Locality Aware Multi-Sensor Data Fusion Model for Smart Environments (장소인식멀티센서스마트 환경을위한 데이터 퓨전 모델)

  • Nawaz, Waqas;Fahim, Muhammad;Lee, Sung-Young;Lee, Young-Koo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.78-80
    • /
    • 2011
  • In the area of data fusion, dealing with heterogeneous data sources, numerous models have been proposed in last three decades to facilitate different application domains i.e. Department of Defense (DoD), monitoring of complex machinery, medical diagnosis and smart buildings. All of these models shared the theme of multiple levels processing to get more reliable and accurate information. In this paper, we consider five most widely acceptable fusion models (Intelligence Cycle, Joint Directors of Laboratories, Boyd control, Waterfall, Omnibus) applied to different areas for data fusion. When they are exposed to a real scenario, where large dataset from heterogeneous sources is utilize for object monitoring, then it may leads us to non-efficient and unreliable information for decision making. The proposed variation works better in terms of time and accuracy due to prior data diminution.

Image Fusion Based on Statistical Hypothesis Test Using Wavelet Transform (웨이블렛 변환을 이용한 통계적 가설검정에 의한 영상융합)

  • Park, Min-Joon;Kwon, Min-Jun;Kim, Gi-Hun;Shim, Han-Seul;Lim, Dong-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.4
    • /
    • pp.695-708
    • /
    • 2011
  • Image fusion is the process of combining multiple images of the same scene into a single fused image with application to many fields, such as remote sensing, computer vision, robotics, medical imaging and military affairs. The widely used image fusion rules that use wavelet transform have been based on a simple comparison with the activity measures of local windows such as mean and standard deviation. In this case, information features from the original images are excluded in the fusion image and distorted fusion images are obtained for noisy images. In this paper, we propose the use of a nonparametric squared ranks test on the quality of variance for two samples in order to overcome the influence of the noise and guarantee the homogeneity of the fused image. We evaluate the method both quantitatively and qualitatively for image fusion as well as compare it to some existing fusion methods. Experimental results indicate that the proposed method is effective and provides satisfactory fusion results.

On Mathematical Representation and Integration Theory for GIS Application of Remote Sensing and Geological Data

  • Moon, Woo-Il M.
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.37-48
    • /
    • 1994
  • In spatial information processing, particularly in non-renewable resource exploration, the spatial data sets, including remote sensing, geophysical and geochemical data, have to be geocoded onto a reference map and integrated for the final analysis and interpretation. Application of a computer based GIS(Geographical Information System of Geological Information System) at some point of the spatial data integration/fusion processing is now a logical and essential step. It should, however, be pointed out that the basic concepts of the GIS based spatial data fusion were developed with insufficient mathematical understanding of spatial characteristics or quantitative modeling framwork of the data. Furthermore many remote sensing and geological data sets, available for many exploration projects, are spatially incomplete in coverage and interduce spatially uneven information distribution. In addition, spectral information of many spatial data sets is often imprecise due to digital rescaling. Direct applications of GIS systems to spatial data fusion can therefore result in seriously erroneous final results. To resolve this problem, some of the important mathematical information representation techniques are briefly reviewed and discussed in this paper with condideration of spatial and spectral characteristics of the common remote sensing and exploration data. They include the basic probabilistic approach, the evidential belief function approach (Dempster-Shafer method) and the fuzzy logic approach. Even though the basic concepts of these three approaches are different, proper application of the techniques and careful interpretation of the final results are expected to yield acceptable conclusions in cach case. Actual tests with real data (Moon, 1990a; An etal., 1991, 1992, 1993) have shown that implementation and application of the methods discussed in this paper consistently provide more accurate final results than most direct applications of GIS techniques.

An Improved Remote Sensing Image Fusion Algorithm Based on IHS Transformation

  • Deng, Chao;Wang, Zhi-heng;Li, Xing-wang;Li, Hui-na;Cavalcante, Charles Casimiro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1633-1649
    • /
    • 2017
  • In remote sensing image processing, the traditional fusion algorithm is based on the Intensity-Hue-Saturation (IHS) transformation. This method does not take into account the texture or spectrum information, spatial resolution and statistical information of the photos adequately, which leads to spectrum distortion of the image. Although traditional solutions in such application combine manifold methods, the fusion procedure is rather complicated and not suitable for practical operation. In this paper, an improved IHS transformation fusion algorithm based on the local variance weighting scheme is proposed for remote sensing images. In our proposal, firstly, the local variance of the SPOT (which comes from French "Systeme Probatoire d'Observation dela Tarre" and means "earth observing system") image is calculated by using different sliding windows. The optimal window size is then selected with the images being normalized with the optimal window local variance. Secondly, the power exponent is chosen as the mapping function, and the local variance is used to obtain the weight of the I component and match SPOT images. Then we obtain the I' component with the weight, the I component and the matched SPOT images. Finally, the final fusion image is obtained by the inverse Intensity-Hue-Saturation transformation of the I', H and S components. The proposed algorithm has been tested and compared with some other image fusion methods well known in the literature. Simulation result indicates that the proposed algorithm could obtain a superior fused image based on quantitative fusion evaluation indices.

Intelligent System based on Command Fusion and Fuzzy Logic Approaches - Application to mobile robot navigation (명령융합과 퍼지기반의 지능형 시스템-이동로봇주행적용)

  • Jin, Taeseok;Kim, Hyun-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1034-1041
    • /
    • 2014
  • This paper propose a fuzzy inference model for obstacle avoidance for a mobile robot with an active camera, which is intelligently searching the goal location in unknown environments using command fusion, based on situational command using an vision sensor. Instead of using "physical sensor fusion" method which generates the trajectory of a robot based upon the environment model and sensory data. In this paper, "command fusion" method is used to govern the robot motions. The navigation strategy is based on the combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance. We describe experimental results obtained with the proposed method that demonstrate successful navigation using real vision data.

Texture Image Fusion on Wavelet Scheme with Space Borne High Resolution Imagery: An Experimental Study

  • Yoo, Hee-Young;Lee , Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.243-252
    • /
    • 2005
  • Wavelet transform and its inverse processing provide the effective framework for data fusion. The purpose of this study is to investigate applicability of wavelet transform using texture images for the urban remote sensing application. We tried several experiments regarding image fusion by wavelet transform and texture imaging using high resolution images such as IKONOS and KOMPSAT EOC. As for texture images, we used homogeneity and ASM (Angular Second Moment) images according that these two types of texture images reveal detailed information of complex features of urban environment well. To find out the useful combination scheme for further applications, we performed DWT(Discrete Wavelet Transform) and IDWT(Inverse Discrete Wavelet Transform) using texture images and original images, with adding edge information on the fused images to display texture-wavelet information within edge boundaries. The edge images were obtained by the LoG (Laplacian of Gaussian) processing of original image. As the qualitative result by the visual interpretation of these experiments, the resultant image by each fusion scheme will be utilized to extract unique details of surface characterization on urban features around edge boundaries.

Pulsed Electromagnetic Field Stimulators Efficacy for Noninvasive Bone Growth in Spine Surgery

  • Fiani, Brian;Kondilis, Athanasios;Runnels, Juliana;Rippe, Preston;Davati, Cyrus
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.4
    • /
    • pp.486-494
    • /
    • 2021
  • The growth of pulsed electromagnetic field (PEMF) therapy and its progress over the years for use in post-operative bone growth has been revolutionary in its effect on bone tissue proliferation and vascular flow. However, further progress in PEMF therapy has been difficult due to lack of more evidence-based understanding of its mechanism of action. Our objective was to review the current understanding of bone growth physiology, the mechanism of PEMF therapy action along with its application in spinal surgery and associated outcomes. The authors of this review examined multiple controlled, comparative, and cohort studies to compare fusion rates of patients undergoing PEMF stimulation. Examining spinal fusion rates, a rounded comparison of post-fusion outcomes with and without bone stimulator was performed. Results showed that postoperative spinal surgery PEMF stimulation had higher rates of fusion than control groups. Though PEMF therapy was proven more effective, multiple factors contributed to difficulty in patient compliance for use. Extended timeframe of treatment and cost of treatment were the main obstacles to full compliance. This review showed that PEMF therapy presented an increased rate of recovery in patients, supporting the use of these devices as an effective post-surgical aid. Given the recent advances in the development of PEMF devices, affordability and access will be much easier suited to the patient population, allowing for more readily available treatment options.

Butt-fusing Procedures and Qualifications of High Density Polyethylene Pipe for Nuclear Power Plant Application (원자력발전소 적용 고밀도 폴리에틸렌 배관의 맞대기 융착절차 및 검증절차 분석)

  • Oh, Young-Jin;Park, Heung-Bae;Shin, Ho-Sang
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.1-7
    • /
    • 2013
  • In nuclear power plants, lined carbon steel pipes or PCCPs (pre-stressed concrete cylinder pipes) have been widely used for sea water transport systems. However, de-bonding of linings and oxidation of PCCP could make problems in aged NPPs (nuclear power plants). Recently at several NPPs in the United States, the PCCPs or lined carbon steel pipes of the sea water or raw water system have been replaced with HDPE (high density polyethylene) pipes, which have outstanding resistance to oxidation and seismic loading. ASME B&PV Code committee developed Code Case N-755, which describes rules for the construction of buried Safety Class 3 polyethylene pressure piping systems. Although US NRC permitted HDPE materials for Class 3 buried piping, their permission was limited to only 10-year operation because of several concerns including the quality of fusion zone of HDPE. In this study, various requirements for fusion qualification test of HDPE and some regulatory issues raised during HDPE application review in foreign NPPs are introduced.

Global Map Building and Navigation of Mobile Robot Based on Ultrasonic Sensor Data Fusion

  • Kang, Shin-Chul;Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.198-204
    • /
    • 2007
  • In mobile robotics, ultrasonic sensors became standard devices for collision avoiding. Moreover, their applicability for map building and navigation has exploited in recent years. In this paper, as the preliminary step for developing a multi-purpose autonomous carrier mobile robot to transport trolleys or heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this paper is to present the use of multi-sensor data fusion such as ultrasonic sensor, IR sensor for mobile robot to navigate, and presents an experimental mobile robot designed to operate autonomously within both indoor and outdoor environments. The global map building based on multi-sensor data fusion is applied for recognition an obstacle free path from a starting position to a known goal region, and simultaneously build a map of straight line segment geometric primitives based on the application of the Hough transform from the actual and noisy sonar data. We will give an explanation for the robot system architecture designed and implemented in this study and a short review of existing techniques, Hough transform, since there exist several recent thorough books and review paper on this paper. Experimental results with a real Pioneer DX2 mobile robot will demonstrate the effectiveness of the discussed methods.