• Title/Summary/Keyword: Fusion Mechanism

Search Result 272, Processing Time 0.032 seconds

Role of N-terminal Hydrophilic Amino Acids in Molecular Translocation of CTLA-4 to Cell Surface (CTLA-4 항원의 세포막 도달 기작에서 친수성 N말단 아미노산 잔기의 역할)

  • Han, Ji-Woong;Lee, Hye-Ja;Kim, Jin-Mi;Choi, Eun-Young;Chung, Hyun-Joo;Lim, Soo-Bin;Choi, Jang-Won;Chung, Yong-Hoon
    • IMMUNE NETWORK
    • /
    • v.2 no.2
    • /
    • pp.102-108
    • /
    • 2002
  • Background: This study was aimed to differentiate two forms of CTLA-4 (CD152) in activated peripheral blood lymphocyte and clarify the mechanism how cytoplasmic form of this molecule is targeted to cell surface. Methods: For this purpose we generated 2 different anti-human CD152 peptide antibodies and 5 different N'-terminal deletion mutant CTLA4Ig fusion proteins and carried out a series of Western blot and ELISA analyses. Antipeptide antibodies made in this study were anti-CTLA4pB and anti-CTLA4pN. The former recognized a region on extracellular single V-like domain and the latter recognized N'-terminal sequence of leader domain of human CD152. Results: In Western blot, the former antibody recognized recombinant human CTLA4Ig fusion protein as an antigen. And this recognition was completely blocked by preincubating antipeptide antibody with the peptide used for the antibody generation at the peptide concentration of 200 ug/ml. These antibodies were recognized human CD152 as a cytoplasmic sequestered- and a membrane bound- forms in phytohemagglutinin (PHA)-stimulated peripheral blood lymphocyte (PBL). These two forms of CD152 were further differentiated by using anti-CTLA4pN and anti-CTLA4pB antibodies such that former recognized cytosolic form only while latter recognized both cytoplasmic- and membraneforms of this molecule. Furthermore, in a transfection expression study of 5 different N'-terminal deletion mutant CTLA4Ig, mutated proteins were secreted out from transfected cell surface only when more than 6 amino acids from N'-terminal were deleted. Conclusion: Our results implies that cytosolic form of CTLA-4 has leader sequence while membrane form of this molecule does not. And also suggested is that at least N'-terminal 6 amino acid residues of human CTLA-4 are required for regulation of targeting this molecule from cytosolic- to membrane- area of activated human peripheral blood T lymphocyte.

Characterization of the Monoclonal Antibody Specific to Human S100A2 Protein (인체 S100A2 단백질에 특이적인 단일클론 항체)

  • Kim, Jae Wha;Yoon, Sun Young;Kim, Joo Heon;Joo, Jong-Hyuck;Kim, Jin Sook;Lee, Younghee;Yeom, Young Il;Choe, Yong-Kyung;Choe, In Seong
    • IMMUNE NETWORK
    • /
    • v.3 no.1
    • /
    • pp.16-22
    • /
    • 2003
  • Background: The S100A2 gene, also known as S100L or CaN19, encodes a protein comprised of 99-amino acids, is a member of the calcium-binding proteins of EF-hand family. According to a recent study, this gene was over-expressed in several early and malignant carcinomas compared to normal tissues. To elucidate the role of S100A2 protein in the process during carcinogenesis, production of monoclonal antibody specific to the protein is essential. Methods: First, cDNA sequence coding for ORF region of human S100A2 gene was amplified and cloned into an expression vector to produce GST fusion protein. Recombinant S100A2 protein and subsequently, monoclonal antibody to the protein were produced. The specificity of anti-S100A2 monoclonal antibody was confirmed by immunoblot analysis of cross reactivity to other recombinant proteins of S100A family (GST-S100A1, GST-S100A4 and GST-S100A6). To confirm the relation of S100A2 to cervical carcinogenesis, S100A2 protein in early cervical carcinoma tissue was immunostained using the monoclonal antibody. Results: GST-S100A2 recombinant protein was purified by affinity chromatography and then fusion protein was cleaved and S100A2 protein was isolated. The monoclonal antibody (KK0723; Korean patent pending #2001-30294) to the protein was produced and the antibody did not react with other members of EF-hand family proteins such as S100A1, S100A4 and S100A6. Conclusion: These data suggest that anti-S100A2 monoclonal antibody produced in this study can be very useful for the early detection of cervical carcinoma and elucidation of mechanism during the early cervical carcinogenesis.

Anaerobic Acid Tolerance Response in Salmonella typhimurium (Salmonella typhimurium의 혐기적 산내성도 평가)

  • Kim, Young-Chan;Lee, Sun;Lee, Kyung-Mi;Im, Sung-Young;Park, Yong-Geun;Baek, Hyung-Seok;Park, Kyung-Ryang;Lee, In-Soo
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.169-175
    • /
    • 1999
  • Salmonella typhimurium can encounter a wide variety of environments during its life cycle. In nature, S. typhimurium can experience and survive dramatic acid stresses that occur in diverse ecological niches ranging from pond water to phagolysosomes. These survival mechanism is aquired by the Acid Tolerance Response(ATR) in Salmonella. The ATR of S. typhimurium is a complex inducible phenomenon in which exposures to slight or moderate low pH will produce a stress response capable of protecting the organism against more severe acid challenges. ATR in Salmonella has two different systems that are called RpoS dependent and independent. We found that ATR in anaerobic was showed RpoS independent because rpoS$\Omega$AP had ATR as S. typhimurium UK1. Using the P22 MudJ(Km, lacZ) operon fusion technique and a lethal selection procedure combining low pH(pH4.5) and sodium acetate(10mM, pH4.5), we isolated LF487 aatA::MudJ which showed acid sensitive in anaerobic condition. aatA locus was determined at 12 min on Salmonella Genetic Map. The survival rate of aatA mutant was showed significantly diminished at pH4.3 than virulent wild type Salmonella in anaerobic condition(5% $CO_2$, 5% H$_2$, 90% $N_2$). Therefore isolated gene was confirmed important gene for anaerobic ATR system.

  • PDF

Multi-modal Emotion Recognition using Semi-supervised Learning and Multiple Neural Networks in the Wild (준 지도학습과 여러 개의 딥 뉴럴 네트워크를 사용한 멀티 모달 기반 감정 인식 알고리즘)

  • Kim, Dae Ha;Song, Byung Cheol
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.351-360
    • /
    • 2018
  • Human emotion recognition is a research topic that is receiving continuous attention in computer vision and artificial intelligence domains. This paper proposes a method for classifying human emotions through multiple neural networks based on multi-modal signals which consist of image, landmark, and audio in a wild environment. The proposed method has the following features. First, the learning performance of the image-based network is greatly improved by employing both multi-task learning and semi-supervised learning using the spatio-temporal characteristic of videos. Second, a model for converting 1-dimensional (1D) landmark information of face into two-dimensional (2D) images, is newly proposed, and a CNN-LSTM network based on the model is proposed for better emotion recognition. Third, based on an observation that audio signals are often very effective for specific emotions, we propose an audio deep learning mechanism robust to the specific emotions. Finally, so-called emotion adaptive fusion is applied to enable synergy of multiple networks. The proposed network improves emotion classification performance by appropriately integrating existing supervised learning and semi-supervised learning networks. In the fifth attempt on the given test set in the EmotiW2017 challenge, the proposed method achieved a classification accuracy of 57.12%.

Development of Water Hammer Simulation Model for Safety Assessment of Hydroelectric Power Plant (수력발전설비의 안전도 평가를 위한 수충격 해석 모형 개발)

  • Nam, Myeong Jun;Lee, Jae-Young;Jung, Woo-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.760-767
    • /
    • 2020
  • Sustainable growth of hydroelectric power plants is expected in consideration of climate change and energy security. However, hydroelectric power plants always have a risk of water hammer damage, and safety assurance is very important. The water hammer phenomenon commonly occurs during operations such as rapid opening and closing of the valves and pump/turbine shutdown in pipe systems, which is more common in cases of emergency shutdown. In this study, a computational numerical model was developed using the MOC-FDM scheme to reflect the mechanism of water hammer occurrence. The proposed model was implemented in boundary conditions such as reservoir, pipeline, valve, and pump/turbine conditions and then applied to simulate hypothetical case studies. The analysis results of the model were verified using the analysis results at the main points of the pipe systems. The model produced reasonably good performance and was validated by comparison with the results of the SIMSEN package model. The model could be used as an efficient tool for the safety assessment of hydroelectric power plants based on accurate prediction of transient behavior in the operation of hydropower facilities.

Different Responses to Arsenic Trioxide between NB4 and UF-1, Acute Promyelocytic Leukemia Cell Lines (급성 전골수성 백혈병 세포주간의 삼산화비소에 대한 반응)

  • Kim, Hye-Ran;Choi, Yoon-Jeong;Ryu, Seong-Yeoll;Lee, Young-Seok;Lee, Sang-Hwa
    • Journal of Life Science
    • /
    • v.16 no.5
    • /
    • pp.759-766
    • /
    • 2006
  • Acute promyelocytic leukemia (APL) is a myeloid leukemia caused by over-expression of fusion protein, PML/RAR$({\alpha})$, which was the result of chromosomal translocation and induces the blockage of differentiation of affected promyelocytes. Pharmacological dose of retinoic acid induces the activation of and subsequent degradation of PML/RAR$({\alpha})$ fusion protein, and then APL cells undergo through the normal differentiation pathway. Arsenic trioxide has proved effective in causing remission of acute promyelocytic leukemia by inducing apoptosis of this tumor cells, whereas the heterogeneity of cellular susceptibility to this cytotoxic agent limited its usage on more types of tumors in clinic. This work showed that arsenic trioxide could induce apoptosis of a panel of acute promyelocytic leukemic cell lines, all-trans-retinoic acid (ATRA) sensitive NB4 cells and ATRA resistant UF-1 cell. They were investigated with regard to the correlation between the inherent or intrinsic cellular level of GSH and the apoptotic susceptibility of the cells to arsenic trioxide. We manifested, in two cell types, the inherently existed difference in intracellular GSH level reactive to the arsenic trioxide, and a positive correlation between the GSH level and their apoptotic sensitivity to arsenic trioxide. And it showed that arsenic trioxide could differentiate promyelocytic cancer cells to the cells possessed of dendritic cell surface markers. Unravelling the cause of the different susceptibility between leukemic cells and proving that promyelocyte could be differentiated to dendritic cells by arsenic trioxide will help not only to understand the mechanism underlying the complete remission of acute promyelocytic leukemia induced by arsenic trioxide, but also to expand its clinical usage.

Subcellular Localization of Novel Stress Protein VISP (새로운 스트레스 단백질인 VISP의 세포내 위치)

  • Moon, Chang-Hoon;Yoon, Won-Joon;Ko, Myoung-Seok;Kim, Hyun-Ju;Park, Jeong-Woo
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.271-276
    • /
    • 2006
  • Previously we demonstrated that virus-inducible stress protein (VISP) is induced in fish cells by the infection of a fish rhabdovirus. In this paper, we investigated the subcellular localization of the VISP and determined the region of VISP responsible for the subcellular localization. The CHSE-214 cells were stained with monoclonal antibody raised against VISP and observed with confocal microscope to detect the endogenous VISP. The results showed that the VISP localizes to the perinuclear region as spots. A plasmid expressing VISP fused to enhanced green fluorescent protein (EGFP) was constructed. The transient expression of full-length VISP fused to EGFP in CHSE-214 cells confirmed the spot formation of the VISP at perinuclear region. To determine the region responsible for the perinuclear localization of the VISP, we constructed a series of deletion mutants and, by using these deletion mutants, we found that C-terminal region of the VISP (aa 612-710) is essential for the perinuclear distribution of VISP and that this region contained nuclear receptor binding motif (691-TLTSLLL-697). Our results suggest that VISP localizes to the perinuclear region and C-terminal regions are important for this localization. Further studies on the role of the perinuclear localization of VISP in IHNV growth mali reveal the novel mechanism of IHNV pathogenecity.

Effect of remifentanil on pre-osteoclast cell differentiation in vitro

  • Jeon, Hyun-Ook;Choi, In-Seok;Yoon, Ji-Young;Kim, Eun-Jung;Yoon, Ji-Uk;Cho, Ah-Reum;Kim, Hyung-Joon;Kim, Cheul-Hong
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.18 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • Background: The structure and function of bone tissue is maintained through a constant remodeling process, which is maintained by the balance between osteoblasts and osteoclasts. The failure of bone remodeling can lead to pathological conditions of bone structure and function. Remifentanil is currently used as a narcotic analgesic agent in general anesthesia and sedation. However, the effect of remifentanil on osteoclasts has not been studied. Therefore, we investigated the effect of remifentanil on pre-osteoclast (pre-OCs) differentiation and the mechanism of osteoclast differentiation in the absence of specific stimulus. Methods: Pre-OCs were obtained by culturing bone marrow-derived macrophages (BMMs) in osteoclastogenic medium for 2 days and then treated with various concentration of remifentanil. The mRNA expression of NFATc1 and c-fos was examined by using real-time PCR. We also examined the effect of remifentanil on the osteoclast-specific genes TRAP, cathepsin K, calcitonin receptor, and DC-STAMP. Finally, we examined the influence of remifentanil on the migration of pre-OCs by using the Boyden chamber assay. Results: Remifentanil increased pre-OC differentiation and osteoclast size, but did not affect the mRNA expression of NFATc1 and c-fos or significantly affect the expression of TRAP, cathepsin K, calcitonin receptor, and DC-STAMP. However, remifentanil increased the migration of pre-OCs. Conclusions: This study suggested that remifentanil promotes the differentiation of pre-OCs and induces maturation, such as increasing osteoclast size. In addition, the increase in osteoclast size was mediated by the enhancement of pre-OC migration and cell fusion.

Deciphering the role of a membrane-targeting domain in assisting endosomal and autophagic membrane localization of a RavZ protein catalytic domain

  • Park, Jui-Hee;Lee, Seung-Hwan;Park, Sang-Won;Jun, Yong-Woo;Kim, Kunhyung;Jeon, Pureum;Kim, Myungjin;Lee, Jin-A;Jang, Deok-Jin
    • BMB Reports
    • /
    • v.54 no.2
    • /
    • pp.118-123
    • /
    • 2021
  • The bacterial effector protein RavZ from a pathogen can impair autophagy in the host by delipidating the mammalian autophagy-related gene 8 (mATG8)-phosphatidylethanolamine (PE) on autophagic membranes. In RavZ, the membrane-targeting (MT) domain is an essential function. However, the molecular mechanism of this domain in regulating the intracellular localization of RavZ in cells is unclear. In this study, we found that the fusion of the green fluorescent protein (GFP) to the MT domain of RavZ (GFP-MT) resulted in localization primarily to the cytosol and nucleus, whereas the GFP-fused duplicated-MT domain (GFP-2xMT) localized to Rab5- or Rab7-positive endosomes. Similarly, GFP fusion to the catalytic domain (CA) of RavZ (GFP-CA) resulted in localization primarily to the cytosol and nucleus, even in autophagy-induced cells. However, by adding the MT domain to GFP-CA (GFP-CA-MT), the cooperation of MT and CA led to localization on the Rab5-positive endosomal membranes in a wortmannin-sensitive manner under nutrient-rich conditions, and to autophagic membranes in autophagy-induced cells. In autophagic membranes, GFP-CA-MT delipidated overexpressed or endogenous mATG8-PE. Furthermore, GFP-CA△α3-MT, an α3 helix deletion within the CA domain, failed to localize to the endosomal or autophagic membranes and could not delipidate overexpressed mATG8-PE. Thus, the CA or MT domain alone is insufficient for stable membrane localization in cells, but the cooperation of MT and CA leads to localization to the endosomal and autophagic membranes. In autophagic membranes, the CA domain can delipidate mATG8-PE without requiring substrate recognition mediated by LC3-interacting region (LIR) motifs.

Codon Optimization, Soluble Expression and Purification of PE_PGRS45 Gene from Mycobacterium tuberculosis and Preparation of Its Polyclonal Antibody Protein

  • Xu, Tao;Li, Minying;Wang, Chutong;Yuan, Meili;Chang, Xianyou;Qian, Zhongqing;Li, Baiqing;Sun, Meiqun;Wang, Hongtao
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.11
    • /
    • pp.1583-1590
    • /
    • 2021
  • Studies have demonstrated that PE_PGRS45 is constitutively expressed under various environmental conditions (such as nutrient depletion, hypoxia, and low pH) of the in vitro growth conditions examined, indicating that PE_PGRS45 protein is critical to the basic functions of Mycobacterium tuberculosis. However, there are few reports about the biochemical function and pathogenic mechanism of PE_PGRS45 protein. The fact that this M. tuberculosis gene is not easily expressed in E. coli may be mainly due to the high content of G+C and the use of unique codons. Fusion tags are indispensable tools used to improve the soluble expression of recombinant proteins and accelerate the characterization of protein structure and function. In the present study, His6, Trx, and His6-MBP were used as fusion tags, but only MBP-PE_PGRS45 was expressed solubly. The purification using His6-MBP tag-specific binding to the Ni column was easy to separate after the tag cleavage. We used the purified PE_PGRS45 to immunize New Zealand rabbits and obtained anti-PE_PGRS45 serum. We found that the titer of polyclonal antibodies against PE_PGR45 was higher than 1:256000. The result shows that purified PE_PGRS45 can induce New Zealand rabbits to produce high-titer antibodies. In conclusion, the recombinant protein PE_PGRS45 was successfully expressed in E. coli and specific antiserum was prepared, which will be followed by further evaluation of these specific antigens to develop highly sensitive and specific diagnostic tests for tuberculosis.