• 제목/요약/키워드: Fusarium verticillioides

검색결과 29건 처리시간 0.026초

Uptake of Radionuclides by Some Fungi

  • Mahmoud, Yehia A.G.
    • Mycobiology
    • /
    • 제32권3호
    • /
    • pp.110-114
    • /
    • 2004
  • Mycobiota including Alternaria alternata, Fusarium verticillioides and Aspergillus pulverulents were tested for their ability to uptake radiocobalt(Co-60) and radiocesium(Cs-137) from radionuclide containing medium. A. alternata was the most efficient fungal species for uptake of radioisotopes, followed by A. pulverulents, whereas F. verticilliodies came in the last rank. The conditions of radioisotope uptake were optimized such as the form of the fungal organism either spores or mycelium, inoculum age and pH of growing medium. Furthermore the total pigments of the tested fungi were extracted and tested for their ability to bind with radioisotope, where melanin of A. alternata produced about 60% for radioisotope uptake out of total added radioisotope radioactivity. Moreover, transmission electron microscopic examination of radioisotope exposed spores showed high precipitation of melanin granules in the spore wall and within the cell as comparing to untreated spores.

Dihydrosphingosine 1-phosphate: New Biomarker for Fumonisin B1 Toxicity

  • Lee, Yong-Moon;Yoo, Hwan-Soo;Oh, Sei-Kwan;Lee, Eun-Young;Kihara, Akio;Igarashi, Yasuyuki
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.69.1-69.1
    • /
    • 2003
  • Fumonisins are a family of mycotoxins produced from Fusarium verticillioides. Most of fumonisin B1 (FB1) toxicities can be explained by its ability to alter sphingolipid metabolism by inhibiting ceramide synthase. At least, the elevation in dihydrosphingosine (DHS) mediates the earliest toxicity of FB1. Some tissues such as kidney and liver, may be most affected by FB1 because they shows high rates of de novo sphingolipid synthesis. Recent review on FB1 toxicity by A.H. Merrill Jr. et al. suggested the possible role of dihydrosphingosine 1-phosphate (dihydroS1P), which sometimes elevated in cell- or tissue specific manners. (omitted)

  • PDF

Current Studies on Bakanae Disease in Rice: Host Range, Molecular Identification, and Disease Management

  • Yu Na An;Chandrasekaran Murugesan;Hyowon Choi;Ki Deok Kim;Se-Chul Chun
    • Mycobiology
    • /
    • 제51권4호
    • /
    • pp.195-209
    • /
    • 2023
  • The seed borne disease such as bakanae is difficult to control. Crop yield loss caused by bakanae depending on the regions and varieties grown, ranging from 3.0% to 95.4%. Bakanae is an important disease of rice worldwide and the pathogen was identified as Fusarium fujikuroi Nirenberg (teleomorph: Gibberella fujikuroi Sawada). Currently, four Fusaria (F. fujikuroi, F. proliferatum, F. verticillioides and F. andiyazi) belonging to F. fujikuroi species complex are generally known as the pathogens of bakanae. The infection occurs through both seed and soil-borne transmission. When infection occurs during the heading stage, rice seeds become contaminated. Molecular detection of pathogens of bakanae is important because identification based on morphological and biological characters could lead to incorrect species designation and time-consuming. Seed disinfection has been studied for a long time in Korea for the management of the bakanae disease of rice. As seed disinfectants have been studied to control bakanae, resistance studies to chemicals have been also conducted. Presently biological control and resistant varieties are not widely used. The detection of this pathogen is critical for seed certification and for preventing field infections. In South Korea, bakanae is designated as a regulated pathogen. To provide highly qualified rice seeds to farms, Korea Seed & Variety Service (KSVS) has been producing and distributing certified rice seeds for producing healthy rice in fields. Therefore, the objective of the study is to summarize the recent progress in molecular identification, fungicide resistance, and the management strategy of bakanae.

사료용 볏짚 곤포사일리지의 곰팡이 및 Mycotoxin 오염 연구 (Studies on Fungal Contamination and Mycotoxins of Rice Straw Round Bale Silage)

  • 성하균;이종경;서성
    • 한국초지조사료학회지
    • /
    • 제31권4호
    • /
    • pp.451-462
    • /
    • 2011
  • 본 연구는 국내 생산 사료용 볏짚 곤포사일리지의 수확 후 저장기간 동안 생성된 곰팡이 오염도 및 곰팡이 종류를 조사하고 mycotoxin 노출 유해성을 구명하고자 실시하였다. 곰팡이 및 mycotoxin 오염을 조사하기 위하여 곰팡이 발생이 육안 식별이 안 되는 정상적인 것부터 오염이 심한 것까지 다양한 상태의 농가에서 급여하고 있는 33점의 볏짚 곤포사일리지 시료를 수거하여 조사하였다. 오염된 곰팡이는 흰색, 회색, 푸른색 및 검은 갈색 등 다양한 색의 콜로니가 오염된 것을 발견할 수 있었다. 곰팡이 오염도는 평균 $2.1{\times}10^6\;cfu\;g^{-1}$ 가장 높은 오염도는 $9.2{\times}10^8\;cfu\;g^{-1}$까지 발견되었으며, 외관상 곰팡이 오염 식별이 안 되는 정상적인 볏짚 곤포사일리지의 모든 시료에서도 곰팡이 오염이 발견되었다. 본 연구에 사용된 볏짚 곤포사일리지에서 발견된 곰팡이의 종류만도 28가지로 매우 다양하였고, 이들 중 유해 독소를 분비하는 8종의 곰팡이 즉, Aspergillus flavus, Aspergillus fumigatus, Fusarium culmorum, Fusarium verticillioides, Penicillium carneum, Penicillium paneum, Penicillium roqueforti, Penicillium viridicatum이 발견되었다. 특히, 가장 많이 분리된 곰팡이는 Penicillium sp.로 이중에서도 P. paneum이 시료의 42%에서, 다음으로 Aspergillus sp. (A. flavus, A. fumigatus)는 시료의 21%에서 발견되었다. 볏짚 곤포사일리지 시료의 42%가 mycotoxin에 오염되어 있었고, 2개 이상의 mycotoxin에 오염된 것은 12%, 그리고 3개 이상 mycotoxin에 오염된 것은 3%였다. Mycotoxin 중 aflatoxin ($B_1$, $B_1$, $G_1$, $G_2$)과 fumonisin ($B_1$, $B_2$)은 발견되지 않았지만, ochratoxin A (1.0~5.8 ug/kg), deoxynivalenol (DON, 156.0~776.7 ug/kg) 및 zearalenone (ZON, 38.0~750.0 ug/kg)이 오염되어 있었다. 따라서 본 연구결과는 볏짚 곤포사일리지가 곰팡이 및 mycotoxin의 유해성에 노출되어 있음을 시사하는 바 앞으로 폭넓은 연구와 함께 mycotoxin으로 인한 가축의 피해를 줄여주기 위한 다각적인 노력이 필요하였다.

Characterization of Bacillus amyloliquefaciens DA12 Showing Potent Antifungal Activity against Mycotoxigenic Fusarium Species

  • Lee, Theresa;Park, Dami;Kim, Kihyun;Lim, Seong Mi;Yu, Nan Hee;Kim, Sosoo;Kim, Hwang-Yong;Jung, Kyu Seok;Jang, Ja Yeong;Park, Jong-Chul;Ham, Hyeonheui;Lee, Soohyung;Hong, Sung Kee;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • 제33권5호
    • /
    • pp.499-507
    • /
    • 2017
  • In an attempt to develop a biological control agent against mycotoxigenic Fusarium species, we isolated Bacillus amyloliquefaciens strain DA12 from soil and explored its antimicrobial activities. DA12 was active against the growth of mycotoxigenic F. asiaticum, F. graminearum, F. proliferatum, and F. verticillioides both in vitro and in planta (maize). Further screening using dual culture extended the activity range of strain DA12 against other fungal pathogens including Botrytis cinerea, Colletotrichum coccodes, Endothia parasitica, Fusarium oxysporum, Raffaelea quercus-mongolicae, and Rhizoctonia solani. The butanol extract of the culture filtrate of B. amyloliquefaciens DA12 highly inhibited the germination of F. graminearum macroconidia with inhibition rate 83% at a concentration of $31.3{\mu}g/ml$ and 100% at a concentration of $250{\mu}g/ml$. The antifungal metabolite from the butanol extract was identified as iturin A by thin layer chromatography-bioautography. In addition, volatile organic compounds produced by DA12 were able to inhibit mycelial growth of various phytopathogenic fungi. The volatile compounds were identified as 2-heptanone, 5-methyl heptanone and 6-methyl heptanone by gas chromatography-mass spectrometry (GC-MS) analysis. These results indicate that the antagonistic activity of Bacillus amyloliquefaciens DA12 was attributable to iturin A and volatile heptanones, and the strain could be used as a biocontrol agent to reduce the development of Fusarium diseases and mycotoxin contamination of crops.

Proteomic Comparison of Gibberella moniliformis in Limited-Nitrogen (Fumonisin-Inducing) and Excess-Nitrogen (Fumonisin-Repressing) Conditions

  • Choi, Yoon-E;Butchko, Robert A.E.;Shim, Won-Bo
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권6호
    • /
    • pp.780-787
    • /
    • 2012
  • The maize pathogen Gibberella moniliformis produces fumonisins, a group of mycotoxins associated with several disorders in animals and humans, including cancer. The current focus of our research is to understand the regulatory mechanisms involved in fumonisin biosynthesis. In this study, we employed a proteomics approach to identify novel genes involved in the fumonisin biosynthesis under nitrogen stress. The combination of genome sequence, mutant strains, EST database, microarrays, and proteomics offers an opportunity to advance our understanding of this process. We investigated the response of the G. moniliformis proteome in limited nitrogen (N0, fumonisin-inducing) and excess nitrogen (N+, fumonisin-repressing) conditions by one- and two-dimensional electrophoresis. We selected 11 differentially expressed proteins, six from limited nitrogen conditions and five from excess nitrogen conditions, and determined the sequences by peptide mass fingerprinting and MS/MS spectrophotometry. Subsequently, we identified the EST sequences corresponding to the proteins and studied their expression profiles in different culture conditions. Through the comparative analysis of gene and protein expression data, we identified three candidate genes for functional analysis and our results provided valuable clues regarding the regulatory mechanisms of fumonisin biosynthesis.

Climate change and resilience of biocontrol agents for mycotoxin control

  • Magan, Naresh;Medina, Angel
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2018년도 춘계학술대회 및 임시총회
    • /
    • pp.41-41
    • /
    • 2018
  • There has been an impetus in the development of biocontrol agents (BCAs) with the removal of a number of chemical compounds in the market, especially in the European Union. This has been a major driver in the development of Integrated Pest Management systems (IPM) for both pest and disease control. For control of mycotoxigenic fungi, there is interest in both control of colonization and more importantly toxin contamination of staple food commodities. Thus the relative inoculum potential of biocontrol agent vs the toxigenic specie sis important. The major bottlenecks in the production and development of formulations of biocontrol agents are the resilience of the strains, inoculum quality and formulation with effective field efficacy. It was recently been shown for mycotoxigenic fungi such as Aspergillus flavus, under extreme climate change conditions, growth is not affected although there may be a stimulation of aflatoxin production. Thus, the development of resilient biocontrol strains which can may have conserved control efficacy but have the necessary resilience becomes critical form a food security point of view. Indeed, under predicted climate change scenarios the diversity of pests and fungal diseases are expected to have profound impacts on food security. Thus, when examining the identification of potential biocontrol strains, production and formulation it is critical that the resilience to CC environmental factors are included and quantified. The problems in relation to the physiological competence and the relative humidity range over which efficacy can occur, especially pre-harvest may be increase under climate change conditions. We have examined the efficacy of atoxigenic strains of A. flavus and Clanostachys rosea and other candidates for control of A. flavus and aflatoxin contamination of maize, and for Fusarium verticillioides and fumonisin toxin control. We have also examined the potential use of fluidized-bed drying, nanoparticles/nanospheres and encapsulation approaches to enhance the potential for the production of resilient biocontrol formulations. The objective being the delivery of biocontrol efficacy under extreme interacting climatic conditions. The potential impact of climate change factors on the efficacy of biocontrol of fungal diseases and mycotoxins are discussed.

  • PDF

Inhibition of Pathogenic Bacteria and Fungi by Natural Phenoxazinone from Octopus Ommochrome Pigments

  • Lewis-Lujan, Lidianys Maria;Rosas-Burgos, Ema Carina;Ezquerra-Brauer, Josafat Marina;Burboa-Zazueta, Maria Guadalupe;Assanga, Simon Bernard Iloki;del Castillo-Castro, Teresa;Penton, Giselle;Plascencia-Jatomea, Maribel
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권8호
    • /
    • pp.989-1002
    • /
    • 2022
  • Cephalopods, in particular octopus (Octopus vulgaris), have the ability to alter their appearance or body pattern by showing a wide range of camouflage by virtue of their chromatophores, which contain nanostructured granules of ommochrome pigments. Recently, the antioxidant and antimicrobial activities of ommochromes have become of great interest; therefore, in this study, the pH-dependent redox effect of the extraction solvent on the antioxidant potential and the structural characterization of the pigments were evaluated. Cell viability was determined by the microdilution method in broth by turbidity, MTT, resazurin, as well as fluorescence microscopy kit assays. A Live/Dead Double Staining Kit and an ROS Kit were used to elucidate the possible inhibitory mechanisms of ommochromes against bacterial and fungal strains. The results obtained revealed that the redox state alters the color changes of the ommochromes and is dependent on the pH in the extraction solvent. Natural phenoxazinone (ommochromes) is moderately toxic to the pathogens Staphylococcus aureus, Bacillus subtilis, Salmonella Typhimurium and Candida albicans, while the species Pseudomonas aeruginosa and Pseudomonas fluorescens, and the filamentous fungi Aspergillus parasiticus, Alternaria spp. and Fusarium verticillioides, were tolerant to these pigments. UV/visible spectral scanning and Fourier- transform infrared spectroscopy (FTIR) suggest the presence of reduced ommatin in methanol/ HCl extract with high intrinsic fluorescence.

Profiles of Bacillus spp. Isolated from the Rhizosphere of Suaeda glauca and Their Potential to Promote Plant Growth and Suppress Fungal Phytopathogens

  • Lu, Ping;Jiang, Ke;Hao, Ya-Qiao;Chu, Wan-Ying;Xu, Yu-Dong;Yang, Jia-Yao;Chen, Jia-Le;Zeng, Guo-Hong;Gu, Zhou-Hang;Zhao, Hong-Xin
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권9호
    • /
    • pp.1231-1240
    • /
    • 2021
  • Members of the genus Bacillus are known to play an important role in promoting plant growth and protecting plants against phytopathogenic microorganisms. In this study, 21 isolates of Bacillus spp. were obtained from the root micro-ecosystem of Suaeda glauca. Analysis of the 16S rRNA genes indicated that the isolates belong to the species Bacillus amyloliquefaciens, Bacillus velezensis, Bacillus subtilis, Bacillus pumilus, Bacillus aryabhattai and Brevibacterium frigoritolerans. One of the interesting findings of this study is that the four strains B1, B5, B16 and B21 are dominant in rhizosphere soil. Based on gyrA, gyrB, and rpoB gene analyses, B1, B5, and B21 were identified as B. amyloliquefaciens and B16 was identified as B. velezensis. Estimation of antifungal activity showed that the isolate B1 had a significant inhibitory effect on Fusarium verticillioides, B5 and B16 on Colletotrichum capsici (syd.) Butl, and B21 on Rhizoctonia cerealis van der Hoeven. The four strains grew well in medium with 1-10% NaCl, a pH value of 5-8, and promoted the growth of Arabidopsis thaliana. Our results indicate that these strains may be promising agents for the biocontrol and promotion of plant growth and further study of the relevant bacteria will provide a useful reference for the development of microbial resources.