• Title/Summary/Keyword: Fusarium spp

Search Result 159, Processing Time 0.027 seconds

Fumonisin Production by Field Isolates of the Gibberella fujikuroi Species Complex and Fusarium commune Obtained from Rice and Corn in Korea (우리나라 벼와 옥수수로부터 분리한 Gibberella fujikuroi 종복합체와 Fusarium commune 소속 균주의 푸모니신 생성능)

  • Lee, Soo-Hyung;Kim, Ji-Hye;Son, Seung-Wan;Lee, Theresa;Yun, Sung-Hwan
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.310-316
    • /
    • 2012
  • Gibberellea fujikuroi species (Gf) complex comprises at least 15 species, most of which not only causes serious plant diseases, but also produces mycotoxins including fumonisins. Here, we focused on the abilities of the field isolates belonging to the Gf complex associated with rice and corn, respectively in Korea to produce fumonisin, all of which were confirmed to carry FUM1, the polyketide synthase gene essential for fumonisin biosynthesis. A total of 88 Gf complex isolates (55 F. fujikuroi, 10 F. verticillioides, 20 F. proliferatum, 2 F. subglutinans, and 1 F. concentricum), and 4 isolates of F. commune, which is a non-member of Gf complex, were grown on rice substrate and determined for their production levels of fumonisins by a HPLC method. Most isolates of F. verticillioides and F. proliferatum, regardless of host origins, produced fumonisin $B_1$ and $B_2$ at diverse ranges of levels ($0.5-2,686.4{\mu}g/g$, and $0.7-1,497.6{\mu}g/g$, respectively). In contrast, all the isolates of F. fujikuroi and other Fusarium species examined produced no fumonisins or only trace amounts ($<10{\mu}g/g$) of fumonisins. Interestingly, the frequencies of relatively high fumonisin-producers among the F. proliferatum and F. fujikuroi isolates derived from corn were higher than those among the fungal isolates from rice. In addition, it is a first report demonstrating the ability of the FUM1-carrying F. commune isolates from rice to produce fumonisins.

Corn Cultivation to Reduce the Mycotoxin Contamination (곰팡이 독소 오염 경감을 위한 옥수수 재배법)

  • Kim, Yangseon;Kang, In Jeong;Shin, Dong Bum;Roh, Jae Hwan;Jung, Jingyo;Heu, Sunggi;Shim, Hyeong Kwon
    • Research in Plant Disease
    • /
    • v.23 no.3
    • /
    • pp.256-261
    • /
    • 2017
  • The effects of insecticide and fungicide treatment were investigated to reduce mycotoxin contamination of corn (Zea mays L.) seeds. Deoxynivalenol and zearalenone contents were reduced in the treated seeds, but aflatoxin, ochratoxin A, fumonisin, and T-2 toxin were not effective by chemical treatments. The chemical treatment did not affect the growth of saprophyte, but inhibited the pathogenic fungi such as Fusarium verticillioides, F. graminearum and F. equiseti. Myotoxin contents at different harvesting time were compared. As the harvest time was delayed, both levels of deoxynivalenol and zearalenone and frequency of Fusarium spp. increased. However, the major nutrient contents of corn seeds were not affected by harvesting period. These results show that chemical treatments are necessary to reduce the fungal contamination of corn and harvest without delay is important as well.

Effects of Fusarium circinatum on Disease Development and Gas Exchange in the Seedlings of Pinus spp. (푸사리움가지마름병균 Fusarium circinatum이 소나무류 묘목의 병 진전과 침엽의 가스교환에 미치는 영향)

  • Woo, Kwan-Soo;Yoon, Jun-Hyuck;Han, Sang-Urk;Woo, Su-Young
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.177-183
    • /
    • 2011
  • Four-year-old seedlings of Pinus thunbergii, Pinus densiflora and Pinus rigida were inoculated with Fusarium circinatum isolate (FT-7), the pitch canker fungus, from P. thunbergii, to evaluate the effects of the pathogen on disease development and gas exchange rate. Needle dehydration was evident on 2 of 10 seedlings of P. thunbergii and P. rigida at 18 and 21 days after inoculation, respectively, while no symptoms were observed in P. densiflora seedlings throughout the experiment. Gas exchange stopped completely in 4 of 5 measured seedlings of P. thunbergii and 2 of 5 measured seedlings of P. rigida at 25 days after inoculation, and in the remaining 3 seedlings of P. rigida at 39 days after inoculation. Disease development in P. thunbergii seedlings was faster than that in P. rigida seedlings. By the time, the experiment was ended at 78 days after inoculation, 9 of 10 seedlings of P. rigida and 8 of 10 seedlings of P. thunbergii seedlings treated with FT-7 was almost dead, but all seedlings of P. densiflora were still healthy. We suggest that P. densiflora is resistant to F. circinatum in the current study, and gas exchange rate of the species after inoculation does not differ significantly compared to that of untreated control.

Evaluation of Soil Streptomyces spp. for the Biological Control of Fusarium Wilt Disease and Growth Promotion in Tomato and Banana

  • Praphat, Kawicha;Jariya, Nitayaros;Prakob, Saman;Sirikanya, Thaporn;Thanwanit, Thanyasiriwat;Khanitta, Somtrakoon;Kusavadee, Sangdee;Aphidech, Sangdee
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.108-122
    • /
    • 2023
  • Fusarium oxysporum f. sp. lycopersici (Fol) and Fusarium oxysporum f. sp. cubense (Foc), are the causal agent of Fusarium wilt disease of tomato and banana, respectively, and cause significant yield losses worldwide. A cost-effective measure, such as biological control agents, was used as an alternative method to control these pathogens. Therefore, in this study, six isolates of the Streptomyces-like colony were isolated from soils and their antagonistic activity against phytopathogenic fungi and plant growth-promoting (PGP) activity were assessed. The results showed that these isolates could inhibit the mycelial growth of Fol and Foc. Among them, isolate STRM304 showed the highest percentage of mycelial growth reduction and broad-spectrum antagonistic activity against all tested fungi. In the pot experiment study, the culture filtrate of isolates STRM103 and STRM104 significantly decreased disease severity and symptoms in Fol inoculated plants. Similarly, the culture filtrate of the STRM304 isolate significantly reduced the severity of the disease and symptoms of the disease in Foc inoculated plants. The PGP activity test presents PGP activities, such as indole acetic acid production, phosphate solubilization, starch hydrolysis, lignin hydrolysis, and cellulase activity. Interestingly, the application of the culture filtrate from all isolates increased the percentage of tomato seed germination and stimulated the growth of tomato plants and banana seedlings, increasing the elongation of the shoot and the root and shoot and root weight compared to the control treatment. Therefore, the isolate STRM103 and STRM104, and STRM304 could be used as biocontrol and PGP agents for tomato and banana, respectively, in sustainable agriculture.

Effects of Water-logging on the Chemical Properties, Microflora and Biomass in Continuous Cropping of Cucumber Soils (오이연작토양(連作土壤)의 화학성(化學性), 미생물상(微生物相) 및 Biomass 에 미치는 담수처리(湛水處理)의 영향(影響))

  • Kim, Hyun-Woo;Kim, Young-Woong;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.2
    • /
    • pp.146-155
    • /
    • 1989
  • A series of the experiments were conducted to evaluate the effects of the water-logging in continuous cropping soils of cucumber. Some of the results obtained from these experiments are summarized as follow: The values of pH in water-logged treatments were from 5.50 to 5.90. Those of EC were less than 0.3 mmhos/cm, were lower than those of control plot. The ratios of Ca/Mg, Ca/K, Mg/K respectively 2.5, 4.8, 2.0, were similar to the standard values. These changes were suitable for cucumber planting. And the number of bacteria among the microflora were determined increased from $10^6$ to $10^7\;cells/g$ dry soil, while that of the Fungi, Fusarium spp, Pythium spp, and Phythophthora spp decreased. In proportion to these changes of microflora, the ratios of B/F in water-logging plot were higher than in the control plot. The contents of Biomass-C were showed 10.47mg/100g soil to 36.12 mg/100g soil, and the contents of that in water-logging were more than in control plots.

  • PDF

Antagonistic Potentiality of Trichoderma harzianum Towards Seed-Borne Fungal Pathogens of Winter Wheat cv. Protiva In Vitro and In Vivo

  • Hasan, M.M.;Rahman, S.M.E.;Kim, Gwang-Hee;Abdallah, Elgorban;Oh, Deog-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.585-591
    • /
    • 2012
  • The antagonistic effect of Trichoderma harzianum on a range of seed-borne fungal pathogens of wheat (viz. Fusarium graminearum, Bipolaris sorokiniana, Aspergillus spp., and Penicillium spp.) was assessed. The potential of T. harzianum as a biocontrol agent was tested in vitro and under field conditions. Coculture of the pathogens and Trichoderma under laboratory conditions clearly showed dominance of T. harzianum. Under natural conditions, biocontrol effects were also obtained against the test fungi. One month after sowing, field emergence (plant stand) was increased by 15.93% over that obtained with the control treatment, and seedling infection was reduced significantly. Leaf blight severity was decreased from 22 to 11 at the heading stage, 35 to 31 at the flowering stage, and 86 to 74 at the grain filling stage. At harvest, the number of tillers per plant was increased by 50%, the yield was increased by 31.58%, and the 1,000-seed weight was increased by 21%.

Identification and Chemotype Profiling of Fusarium Species in Korean Oat (국내 귀리의Fusarium속 균의 다양성 및 독소 화학형)

  • Choi, Jung-Hye;Nah, Ju-Young;Jin, Hyun-Suk;Lim, Su-Bin;Paek, Ji-Seon;Lee, Mi-Jeong;Jang, Ja-Yeong;Lee, Theresa;Hong, Sung Kee;Kim, Jeomsoon
    • Research in Plant Disease
    • /
    • v.25 no.4
    • /
    • pp.157-163
    • /
    • 2019
  • This study aimed to assess the incidence and distribution of toxigenic fungi in Korean oat. Toxigenic fungi were isolated from oat samples collected from 12 oat fields from heading to harvest in 2017 and 2018. A total of 745 fungal colonies were isolated based on morphology and identified using marker genes. About 92% of the fungal isolates were Fusarium spp. and others were Penicillium (5.9%) and Aspergillus (2.1%). Fusarium isolates comprised mostly of F. asiaticum (83.1%), followed by F. incarnatum (5.4%), F. proliferatum (3.5%), F. fujikuroi (2.8%), F. tricinctum species complex (FTSC) 11 (1.5%) and F. graminearum (1.0%). About 97% of F. asiaticum was nivalenol type, and 3-acetyl deoxynivalenol (3.2%) and 15-acetyl deoxynivalenol (0.4%) types also were found. Pathogenicity test of the selected Fusarium isolates revealed that F. asiaticum isolates have a wide range of virulence depending on the tested plants. F. graminearum and FTSC 11 isolates from blighted spikelets were the most virulent in naked oat. All Fusarium isolates (n=18) except one (FTSC 11) produced nivalenol (0.2-7.6 ㎍/g), deoxynivalenol (0.03-6.1 ㎍/g), and zearalenone (0.1-27.0 ㎍/g) on rice medium. This study is first report that F. asiaticum causes Fusarium head blight disease of oat in Korea. These findings demonstrate the dominance of F. asiaticum in oat agroecosystems as in rice, wheat and barley in Korea.

Marketing of cleaned fresh ginseng and pre-packaging fumigation of 2-phenylethyl alcohol on ginseng storability (세척인삼 유통 현황과 포장전 2-phenylethyl Alcohol 훈증이 저장성에 미치는 영향)

  • Kim, Sun-Ik;Sung, Bong-Jae;Kim, Hyeon-Ho;Hwang, Yong-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.2
    • /
    • pp.205-212
    • /
    • 2011
  • The potential factors for quality loss of cleaned fresh ginseng and technology to be associated with the improvement of marketability through pre-packaging fumigation were examined. Major microorganisms isolated from fresh ginseng included Botrytis cinerea, and Erwinia sp. Others such as Cylindrocarpon sp., Fusarium spp., Pennicilium spp., Bacillus spp. were also found at relatively low frequency. The bacterial density of vacuum packaged fresh ginseng rapidly increased during simulated marketing. Little correlation between bacterial growth and package swelling was found. In order to improve packaging method of fresh ginseng, pre-packaging treatment of 2-phenylethyl alcohol (PE, 100 uL/L, 4 hr) was examined. The fumigation treatment effectively inhibited the growth of bacteria density and also effective on keeping firmness of ginseng root, especially in cortical portion. The internal gas compositions of plastic container packaged for ginseng were approximately ranged between 6 to 8% $O_2$and 3 to 4% $CO_2$. The $O_2$ level of fumigation treatment was lower than control whereas $CO_2$ level was higher. The upsurge of ethylene evolution I day after simulated marketing was found only in fumigation treatment but it returned to ordinary level at day 2. The sucrose content of 2-PE treatment was significantly reduced at 5 days after simulated marketing but reducing sugars like glucose and fructose remained at higher level. The difference in sugar levels was reduced after 10 days of simulated marketing. The decay of fresh ginseng began at the lateral or fine root, which is weak to physical damage, in general. The epidermis was more damaged. Plastic container packaging with PE fumigation could be an alternative to vacuum packaging, which allows an aerobic environment and prevents anaerobic respiration. Further study of pre-package fumigation is required to improve technology of fresh ginseng marketing.

Field Application of Egg and Larval Parasitic Fungi and Chemicals for Controlling Root-knot Nematodes on Some Medicinal Herb (몇종의 선충천적 진균과 화학약제를 이용한 약용작물 뿌리혹선충 방제효과 검토)

  • 박소득;추연대;정기채;심용구;최영연
    • Korean journal of applied entomology
    • /
    • v.32 no.1
    • /
    • pp.105-114
    • /
    • 1993
  • Series of studies were conducted to establish biological and chemical control method for Meloidogyne spp to medical herbs by applied of nematophagous fungi, Arthrobotrys spp, Fusarium spp, and egg parastic fungi, Paecilomyces lilacinus were applied for root-knot nematodes on medicinal herbs, Paeonia albiflora, Codonopsis lanceolata, Cnidium officinale. The results are as follow. In pot experiments, The no. of root gall and egg mass and larvae of Cnidium officinale. The results are as follow. In pot experiments. The no. of root gall and egg mass and larvae of Cnidium officinale, Codonopsis lanceolata, Paeonia japonica lowered in P. Lilacinus treated plots compare to untreated control plots. But A. thaumasia F. oxysporum treated plots were less effective. Effect of egg parasitic fungi and chemical treatment at divided root of Paeonia japonica after sterilized in pot were increased in the fresh weight, root weight, control effect in P. lilacinus treated plots as chemical, Carbo G treated plots compare to untreted control plots. I field experiment, the number of root gall, egg mass and nematode density of Paeonia were also suppressed in P. lilacinus treated plots. It was very effective continuous 2 years and transplanting time on Paeonia japonica infested soil with the M. hapla in field in both region, Chillgok and Euisung treated P. lilacinus as chemical treated plots. Soaking effect of insecticide for Paeonia japonica at diving shoot before transplating in pot were effective for 12hours immersion into 1,000 ppm of Benlate T + Mep Ec, Benlate T + Fenthion EC in pot and field Experiment. In the Examination of fungi activily on P.japonica field 1 year after soil treatment, Number of spore of P. lilacinus were 1,000~1,300 in 3 region except Euisung.

  • PDF

Different Response Mechanisms of Rhizosphere Microbial Communities in Two Species of Amorphophallus to Pectobacterium carotovorum subsp. carotovorum Infection

  • Min Yang;Ying Qi;Jiani Liu;Penghua Gao;Feiyan Huang;Lei Yu;Hairu Chen
    • The Plant Pathology Journal
    • /
    • v.39 no.2
    • /
    • pp.207-219
    • /
    • 2023
  • Soft rot is a widespread, catastrophic disease caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) that severely damages the production of Amorphophallus spp. This study evaluated the rhizosphere bacterial and fungal communities in Pcc-infected and uninfected plants of two species of Amorphophallus, A. muelleri and A. konjac. Principal component analysis showed that the samples formed different clusters according to the Pcc infection status, indicating that Pcc infection can cause a large number of changes in the bacterial and fungal communities in the Amorphophallus spp. rhizosphere soil. However, the response mechanisms of A. muelleri and A. konjac are different. There was little difference in the overall microbial species composition among the four treatments, but the relative abundances of core microbiome members were significantly different. The relative abundances of Actinobacteria, Chloroflexi, Acidobacteria, Firmicutes, Bacillus, and Lysobacter were lower in infected A. konjac plants than in healthy plants; in contrast, those of infected A. muelleri plants were higher than those in healthy plants. For fungi, the relative abundances of Ascomycota and Fusarium in the rhizosphere of infected A. konjac plants were significantly higher than those of healthy plants, but those of infected A. muelleri plants were lower than those of healthy plants. The relative abundance of beneficial Penicillium fungi was lower in infected A. konjac plants than in healthy plants, and that of infected A. muelleri plants was higher than that of healthy plants. These findings can provide theoretical references for further functional research and utilization of Amorphophallus spp. rhizosphere microbial communities in the future.