• Title/Summary/Keyword: Fusarium oxysporum f. sp. radicis lycopersici

Search Result 7, Processing Time 0.019 seconds

Inactivation of Wilt Germs (Fusarium oxysporum f. sp. radicis lycopersici) using Dielectric Barrier Discharge Plasma in Hydroponic Cultivation System (양액재배 시스템에서 유전체장벽방전 플라즈마를 이용한 시들음병균(Fusarium oxysporum f. sp. radicis lycopersici)의 불활성화)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.28 no.5
    • /
    • pp.495-502
    • /
    • 2019
  • This study was conducted to investigated the possibility of inactivating wilt germs (Fusarium oxysporum f. sp. radicis lycopersici) using Dielectric Barrier Discharge (DBD) plasma in a hydroponic system. Recirculating hydroponic cultivation system for inactivation was consisted of planting port, LED lamp, water tank, and circulating pump for hydroponic and DBD plasma reactor. Two experiments were conducted: batch and intermittent continuous process. The effect of plasma treatment on Total Residual Oxidants (TRO) concentration change, Fusarium inactivation and growth of lettuce were investigated. In the batch experiment, most of the Fusarium was inactivated at a TRO concentration of 0.15 mg/L or more at four-day intervals. There was no change in lettuce growth after two times of plasma treatment for one week. The intermittent continuous experiment consisted of 30-minute, 60-minute, and 90-minute plasma treatment in 2 day intervals and 30-minute treatment a one-day; most of the Fusarium was inactivated only by treatment for 30-minute every two days. However, if inactivation under $10^1CFU/mL$ is required, it will be necessary to treat for 60 minutes in 2 day intervals. The plasma treatment caused no damage to the lettuce, except the 30 min plasma treatment ay the one-day interval. It was considered that the residual TRO concentration was higher than that of the other treatments.

Crown and Root Rot of Greenhouse Tomato Caused by Fusarium oxysporum f. sp. radicis-lycopersici in Korea

  • Kim, Jong-Tae;Park, In-Hee;Hahm, Young-Il;Yu, Seung-Hun
    • The Plant Pathology Journal
    • /
    • v.17 no.5
    • /
    • pp.290-294
    • /
    • 2001
  • Forty(40) isolates of Fusarium oxysporum isolated from wilting tomato plants at Buyeo of Korea in 1997 were inoculated to four tomato cultivars (Ponderosa, Okitsu 3, Walter, and Zuiken) to examine pathogenic reactions. Isolation rates of F. oxysporum f. sp. lycopersici (FOL) races 1 and 2, and F. oxysporum f. sp. radicis-lycopersici(FORL) were 3.5%, 24.5%, and 57.5%, respectively. Mycelial growth on potato-dextrose agar at different temperature for the three pathogens was $26^{\circ}$. In the pathogenicity tests, however, the range of optimum temperature for disease development for FORL was between 15 and $20^{\circ}$, while that for races 1 and 2 of FOL were specifically pathogenic to tomato only. This suggests that host ranges of FORL and FOL differ significantly.

  • PDF

Vegetative Compatibility Group of Fusarium oxysporum f. sp. radicis-lycopersici in Korea

  • Kim, Sung-Ho;Kim, Jong-Tae;Jang, Chang-Soon;Yoo, Sung-Jun;Kim, Hong-Gi
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.214-220
    • /
    • 2005
  • Vegetative compatibility groups (VCGs) of Fusarium oxysporum f. sp. radicis-lycopersici isolates collected from tomatoes in Korea were analyzed to determine the genetic characteristics and compared to those of foreign isolates. In comparison of VCG specificity with foreign VCG subgroup testers, Korean isolates were revealed to be VCG 0094 and to be similar to those of Israel and Florida, USA having a 'Universal' property. Results of this study will contribute the effective control of disease through precise estimation of fungal damage, the prediction of new pathogenic isolates appearance, and the movement of foreign pathogens.

Biocontrol of Fusarium Crown and Root Rot and Promotion of Growth of Tomato by Paenibacillus Strains Isolated from Soil

  • Xu, Sheng Jun;Kim, Byung Sup
    • Mycobiology
    • /
    • v.42 no.2
    • /
    • pp.158-166
    • /
    • 2014
  • In this study, bacterial strains were isolated from soils from 30 locations of Samcheok, Gangwon province. Of the isolated strains, seven showed potential plant growth promoting and antagonistic activities. Based on cultural and morphological characterization, and 16S rRNA gene sequencing, these strains were identified as Paenibacillus species. All seven strains produced ammonia, cellulase, hydrocyanic acid, indole-3-acetic acid, protease, phosphatase, and siderophores. They also inhibited the mycelial growth of Fusarium oxysporum f. sp. radicis-lycopersici in vitro. The seven Paenibacillus strains enhanced a range of growth parameters in tomato plants under greenhouse conditions, in comparison with non-inoculated control plants. Notably, treatment of tomato plants with one identified strain, P. polymyxa SC09-21, resulted in 80.0% suppression of fusarium crown and root rot under greenhouse conditions. The plant growth promoting and antifungal activity of P. polymyxa SC09-21 identified in this study highlight its potential suitability as a bioinoculant.

Pseudomonas putida Strain 17 Isolated from Replant Soil Promotes Tomato Growth and Inhibits Conidial Germination of Soilborne Plant Pathogens

  • Lee, Sang-Woo;Ahn, Il-Pyung;Lim, Jae-Wook;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.244-251
    • /
    • 2005
  • The induction of growth promotion on numerous crops by rhizobacteria is a well documented phenomenon. In case of tomato (Lycopersicon esculentum), fruit yield is higher in replant soil than that in fresh soil. To investigate what kind of rhizobacterium is involved, microbial community in rhizosphere and on rhizoplane of tomato plants from each soil was analyzed by dilution plating on selective media. Many Gram-negative bacteria and actinomycetes were isolated from tomato in replant soil. One Gram-negative rhizobacterium isolated was identified as Pseudomonas putida based on its biochemical characteristics, fatty acid methyl ester analysis and 16S rDNA sequence. This bacterium designated strain 17 inhibited the growth of Pseudomonas corrugata, and increased growth of tomato seedlings. In addition, its culture filtrate inhibited conidial germination of plant-pathogenic fungi such as Fusarium oxysporum f. sp. radicis-lycopersici, F. oxysporum f. sp. cucumerinum, and Nectria radicicola. Scanning electron microscopy revealed strain 17 colonized and persisted on the epidermal surfaces of tomato radicles and roots. These results suggest that P. putida strain 17 may serve as a biological control agent to suppress multiple soil-borne diseases for tomato plants. Increased microbial populations that suppress deleterious microorganisms including pathogens could be one of the major factors in increased tomato yield in replant soil.

Antifungal Activity of Paenibacillus kribbensis Strain T-9 Isolated from Soils against Several Plant Pathogenic Fungi

  • Xu, Sheng Jun;Hong, Sae Jin;Choi, Woobong;Kim, Byung Sup
    • The Plant Pathology Journal
    • /
    • v.30 no.1
    • /
    • pp.102-108
    • /
    • 2014
  • The bacterial strain T-9, which shows strong antifungal activity, is isolated from the soils of Samcheok, Gangwondo and identified as Paenibacillus kribbensis according to morphological and taxonomic characteristics and 16S rRNA gene sequence analysis. The P. kribbensis strain T-9 strongly inhibits the growth of various phytopathogenic fungi including Botrytis cinerea, Colletotricum acutatum, Fusarium oxysporum f. sp. radicis-lycopersici, Magnaporthe oryzae, Phytophthora capsici, Rhizoctonia solani, and Sclerotium cepivorum in vitro. Also, the P. kribbensis strain T-9 exhibited similar or better control effects to plant diseases than in fungicide treatment through in vivo assays. In the 2-year greenhouse experiments, P. kribbensis strain T-9 was highly effective against clubroot. In the 2-year field trials, the P. kribbensis strain T-9 was less effective than the fungicide, but reduced clubroot on Chinese cabbage when compared to the control. The above-described results indicate that the strain T-9 may have the potential as an antagonist to control various phytopathogenic fungi.