• Title/Summary/Keyword: Fusarium basal rot

Search Result 13, Processing Time 0.016 seconds

Genetic Diversity of Fusarium proliferatum Populations from Maize, Onion, Rice and Sugarcane in Iran Based on Vegetative Compatibility Grouping

  • Alizadeh, Alireza;Javan-Nikkhah, Mohammad;Fotouhifar, Khalil-Berdi;Motlagh, Elahe Rabiee;Rahjoo, Vahid
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.216-222
    • /
    • 2010
  • Fusarium proliferatum is the causal agent of stalk and root rot disease of maize, foot rot disease of rice, basal and root rot disease of onion and knife cut disease of sugarcane in Iran. In recent years, incidence and severity of these diseases have been increased in Iran. Fifty seven F. proliferatum single-spore isolates collected from diseased maize, rice, onion and sugarcane plants at different areas were used to study genetic diversity by determination of vegetative compatibility groups (VCGs). Chlorate-resistant nitrate non-utilizing (nit) mutants were recovered from selected isolates of F. proliferatum and used in complementation tests. All isolates in which both nit1 and NitM (or nit3) mutants were recovered, demonstrated self-compatibility. Vegetative compatibility tests by pairing nit mutants identified 30 VCGs among 57 isolates. Twenty-three isolates belonged to singlemember VCGs and the remaining 34 isolates, belonged to other seven multimember VCGs. Segregation of F. proliferatum isolates obtained from various area and host plants into different VCGs in Iran is reported for the first time. In this study, none of isolates obtained from rice complemented with any other isolates from onion and sugarcane and, non complementation occurred between onion and sugarcane isolates. Also, only one complementation occurred between one isolate of maize and one isolate of sugarcane and rice. Thus, a correlation between VCGs grouping and host preferences was founded. It is concluded that natural populations of F. proliferatum in Iran are probably genetically divergent and include isolates representing a potential risk for disease development.

Occurrence and Biological Control of Postharvest Decay in Onion Caused by Fungi

  • Lee, Joon-Taek;Bae, Dong-Won;Park, Seun-Hee;Shim, Chang-Ki;Kwak, Youn-Sig;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.17 no.3
    • /
    • pp.141-148
    • /
    • 2001
  • Postharvest decay of onion bulbs was examined by inspecting the commercial packages in the market or in storage. Bulb rot incidence was unexpectedly high, and onion bulbs with 1st quality grade were rotten most severely by 51%, followed by 32% for 2nd and 21% for 3rd grades. This indicates that larger bulbs had higher incidences of bulb rots. Major pathogens associated with basal and neck rots were Fusarium oxysporum and Aspergillus sp. or Botrytis allii, respectively, of which basal rot was most prevalent and damaging during storage. Among the epiphytic microorgani는 from onion plants, several Bacillus and Paenibacillus spp. and previously selected Pseudomonas putida and Trichoderma harzianum had inhibitory efficacy against bulb rot pathogens. Among these B. amyloliquefaciens BL-3, Paenibacillus polymyxa BL-4, and P. putida Cha 94 were highly inhibitory to conidial germination of F. oxysporum and B. allii. P. putida Cha 94, B. amyloliquefaciens BL-3, P. polymyxa BL-4, and T. harzianum TM were applied in the rhizoplane of onion at transplanting. Initially antagonist populations decreased rapidly during the first one month. However, among these antagonists, rhizoplane population densities of BL-3, Cha 94, and TM were consistently high thereafter, maintaining about 10$^4$-10$^{5}$ cells or spores per gram of onion root up to harvest time. The other bacterial antagonist BL-4 survived only for two months. TM was the most effective biocontrol agent against basal rot, with the number of rotten bulbs recorded at 4%, while that of the control was 16%. Cha 94 was effective for the first 20 days, but basal rot increased thereafter and had about the same control efficacy as that of BL-3 and BL-4. When the antagonists were applied to the topping areas of onion bulbs at harvest, TM was the most effective in protecting the stored onion bulbs from neck rotting. The second effective antagonist was BL-3. TM and BL-3 completely suppressed the neck rot in another test, suggesting that biocontrol of postharvest decay of onion using these microorganisms either at the time of transplanting or at harvesting may be promising.

  • PDF

Occurrence of Stem and Fruit Rot of Paprika Caused by Nectria haematococca

  • Jee, Hyeong-Jin;Ryu, Kyung-Yeol;Shim, Chang-Ki;Nam, Ki-Woong
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.317-321
    • /
    • 2005
  • Since 2000 severe rots on aerial and underground parts of paprika (Capsicum annum L.) has occurred in most surveyed glasshouses throughout the country. A total of 56 isolates of a fungus were consistently isolated from various plant parts such as fruit, stem, branch, and root collected from 16 farms in five provinces. Anamorph stage of the fungus was identified as Fusarium solani based on its morphological characteristics. However, the fungus readily produced a sexual structure of perithecia on infected plant tissues and on agar media. Since the fungus formed abundant perithecium by a single isolate, it was considered as a homothallic strain of Nectria haematococca, the teleomorph of F. solani. Irregularly globose perithecia with orange to red color formed sparsely to gregariously on dead tissues of fruits and basal stems at the late infection stage, which is a diagnostic sign for the disease. Perithecia ranged from 125 to 220 ${\mu}m$ in diameter varied among isolates. Asci enveloping eight ascospores were cylindrical and measured 60-80x8-12 ${\mu}m$. Ellipsoid to obovate ascospores are two-celled and measured 11-18x4-7 ${\mu}m$. Ascospores were hyaline, slightly constricted at the central septum, and revealed longitudinal striations that is characteristic of the species. This fungus that has never been reported in Korea has previously become a threat to paprika cultivation because of its strong pathogenicity and nationwide distribution.