• 제목/요약/키워드: Fus

검색결과 34건 처리시간 0.022초

Acid sphingomyelinase inhibition improves motor behavioral deficits and neuronal loss in an amyotrophic lateral sclerosis mouse model

  • Byung Jo, Choi;Kang Ho, Park;Min Hee, Park;Eric Jinsheng, Huang;Seung Hyun, Kim;Jae-sung, Bae;Hee Kyung, Jin
    • BMB Reports
    • /
    • 제55권12호
    • /
    • pp.621-626
    • /
    • 2022
  • Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by the degeneration of motor neurons in the spinal cord. Main symptoms are manifested as weakness, muscle loss, and muscle atrophy. Some studies have reported that alterations in sphingolipid metabolism may be intimately related to neurodegenerative diseases, including ALS. Acid sphingomyelinase (ASM), a sphingolipid-metabolizing enzyme, is considered an important mediator of neurodegenerative diseases. Herein, we show that ASM activity increases in samples from patients with ALS and in a mouse model. Moreover, genetic inhibition of ASM improves motor function impairment and spinal neuronal loss in an ALS mouse model. Therefore, these results suggest the role of ASM as a potentially effective target and ASM inhibition may be a possible therapeutic approach for ALS.

Proteomic Analysis of Proteins Increased or Reduced by Ethanol of Lactobacillus plantarum ST4 Isolated from Makgeolli, Traditional Korean Rice Wine

  • Lee, Seung-Gyu;Lee, Kang-Wook;Park, Tae-Heung;Park, Ji-Yeong;Han, Nam-Soo;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권4호
    • /
    • pp.516-525
    • /
    • 2012
  • LAB were isolated from makgeolli locally produced around Jinju, Gyeongnam, S. Korea during spring of 2011. Randomly selected 11 isolates from MRS agar plates were identified first by API CHL 50 kits and then 16S rRNA gene sequencing. All 11 isolates were identified as Lactobacillus plantarum. Among them, ST4 grew in MRS broth with ethanol up to 10%, showing the highest alcohol resistance. L. plantarum ST4 was moderately resistant against acid and bile salts. When cellular proteins of L. plantarum ST4 under ethanol stress were analyzed by two-dimensional gel electrophoresis (2DE), the intensities of 6 spots increased, whereas 22 spots decreased at least 2-fold. Those 28 spots were identified by peptide mass fingerprinting (PMF). FusA2 (elongation factor G) increased 18.8-fold (6% ethanol) compared with control. Other proteins were AtpD (ATP synthase subunit beta), DnaK, GroEL, Tuf (elongation factor Tu), and Npr2 (NADH peroxidase), respectively. Among the 22 proteins decreased in intensities, lactate dehydrogenases (LdhD and LdhL1) were included.

Role of MAPK Signaling Pathways in Regulating the Hydrophobin Cryparin in the Chestnut Blight Fungus Cryphonectria parasitica

  • So, Kum-Kang;Kim, Dae-Hyuk
    • Mycobiology
    • /
    • 제45권4호
    • /
    • pp.362-369
    • /
    • 2017
  • We assessed the regulation of cryparin, a class II hydrophobin, using three representative mitogen-activated protein kinase (MAPK) pathways in Cryphonectria parasitica. Mutation of the CpSlt2 gene, an ortholog of yeast SLT2 in the cell wall integrity (CWI) pathway, resulted in a dramatic decrease in cryparin production. Similarly, a mutant of the CpBck1 gene, a MAP kinase kinase kinase gene in the CWI pathway, showed decreased cryparin production. Additionally, mutation of the cpmk1 gene, an ortholog of yeast HOG1, showed decreased cryparin production. However, mutation of the cpmk2 gene, an ortholog of yeast Kss1/Fus3, showed increased cryparin production. The easy-wet phenotype and accumulation of the cryparin transcript in corresponding mutants were consistent with the cryparin production results. In silico analysis of the promoter region of the cryparin gene revealed the presence of binding motifs related to downstream transcription factors of CWI, HOG1, and pheromone responsive pathways including MADS-box- and Ste12-binding domains. Real-time reverse transcriptase PCR analyses indicated that both CpRlm1, an ortholog of yeast RLM1 in the CWI pathway, and cpst12, an ortholog of yeast STE12 in the mating pathway, showed significantly reduced transcription levels in the mutant strains showing lower cryparin production in C. prasitica. However, the transcription of CpMcm1, an ortholog of yeast MCM1, did not correlate with that of the mutant strains showing downregulation of cryparin. These results indicate that three representative MAPK pathways played a role in regulating cryparin production. However, regulation varied depending on the MAPK pathways: the CWI and HOG1 pathways were stimulatory, whereas the pheromone-responsive MAPK was repressive.

해석적 모델을 이용한 분산된 리오더 버퍼 슈퍼스칼라 프로세서의 성능분석 (The Performance Analysis of Distributed Reorder Buffer in Superscalar Processor using Analytical Model)

  • 윤완오;신광식;김경섭;이윤섭;최상방
    • 대한전자공학회논문지SD
    • /
    • 제45권12호
    • /
    • pp.73-82
    • /
    • 2008
  • 슈퍼스칼라 프로세서에서 리오더 버퍼의 복잡도를 줄이는 여러 가지 방법이 제시되었다. 그 중에서 리오더 버퍼의 포트를 가장 단순하게 하는 방법은 하나로 되어 있는 리오더 버퍼의 구조를 실행 유닛의 개수만큼 여러 개로 나누어 분산된 리오더 버퍼로 구현하는 것이다. 각각의 분산된 리오더 버퍼는 실행 유닛의 작업 부하에 따라 그 크기를 달리 할 수 있다. 하지만 분산된 리오더 버퍼의 크기에 따라 성능의 변화가 크다. 지금까지의 분산된 리오더 버퍼로 나누는 연구는 적절한 크기를 결정하기 위해 시뮬레이션 결과에 기반 하여 직관적으로 유추하였다. 본 논문은 분산된 리오더 버퍼에 M/M/1 큐잉 이론을 이용한 수학적모델을 적용하여 최적의 크기를 결정하고 CPU2000 벤치마크 프로그램을 수행하여 성능을 측정하고 평가하였으며 기존 슈퍼스칼라 프로세서 성능의 99.2%를 보여주는 분산된 리오더 버퍼의 최적 크기를 정할 수 있었다. 기존의 리오더 버퍼와 본 논문에서 제시한 분산된 리오더 버퍼를 HDL로 구현하였을 때 포트에서 82%의 하드웨어 자원과 30%이상의 지연시간을 줄였다.