• Title/Summary/Keyword: Furnace Annealing

Search Result 249, Processing Time 0.027 seconds

Rapid Thermal Annealing of GaN EpiLayer grown by Molecular Beam Epitaxy (MBE로 성장한 GaN 에피층의 급속 열처리)

  • Choi, Sung-Jai;Lee, Won-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2010
  • We have investigated effects of the rapid thermal annealing of GaN epilayers by molecular beam epitaxy in nitrogen atmosphere. The improvement of structural properties of the samples was observed after rapid thermal annealing under optimum conditions. This improvement in crystal quality is due to a reduction of the spread in the lattice parameter in epilayers. The annealing has been performed in a rapid thermal annealing furnace at $950^{\circ}C$. The effect of rapid thermal annealing on the structural properties of GaN was studied by x-ray diffraction. The Bragg peak shifts toward larger angle as the annealing time increases. As the thermal treatment time increases, FWHM(full width at half maximum) of the peak slightly increase with its decreases followed and it increases again. Results demonstrate that rapid thermal annealing did not always promote qualities of GaN epilayers. However, rapid thermal annealing under optimum conditions improve structural properties of the samples, elevating their crystal quality with a reduction of inaccuracy in the lattice parameter of the epilayers.

The Thermoelectric Properties of Fe-Si Alloys Prepared by RF Induction Furnace (고주파 진공유도로로 제작한 Fe-Si계 합금의 열전변환특성)

  • 박형진;배철훈
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.632-637
    • /
    • 2000
  • Thermoelectric conversion properties of commercial Fe-Si2 and Fe-Si alloy ingots prepared by RF inductive furnace were investigated. As sintering temperature increased, density of the specimen increased and the phase transformation from metallic phases ($\varepsilon$-FeSi, ${\alpha}$-Fe2Si5) to semiconducting phase (${\beta}$-FeSi2) occurred more effectively. The FeSi phase was detected even after 100hrs of annealing treatment. For the Fesi1.95∼FeSi2.05 specimens prepared by RF inductive furnace, the thermoelectric property improved as the composition of the specimen approached to stoichiometric composition FeSi2. Electrical conductivity of the specimen increased with increasing temperatures showing typical semiconducting behavior. From the electrical conductivity measurements, activation energy in the intrinsic region (above about 700 K) was calculated to be approximately 0.46 eV. In spite of non-doping, the Seebeck coefficient for every specimen exhibited p-type conduction due to Si deficiency. Its maximum value was located at about 475 K, and then decreased abruptly with increasing temperatures. The power factor was governed by the Seebeck coefficient of the specimen more significantly than by electrical conductivity.

  • PDF

Aging effect of Solution-Processed InGaZnO Thin-Film-Transistors Annealed by Conventional Thermal Annealing and Microwave Irradiation

  • Kim, Gyeong-Jun;Lee, Jae-Won;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.211.1-211.1
    • /
    • 2015
  • 최근 용액 공정을 이용한 산화물 반도체에 대한 연구가 활발히 진행되고 있다. 넓은 밴드갭을 가지고 있는 산화물 반도체는 높은 투과율을 가지고 있어 투명 디스플레이에 적용이 가능하다. 기존의 박막 진공증착 방법은 진공상태를 유지하기 위한 장비의 가격이 비싸며, 대면적의 어려움, 높은 생산단가 등으로 생산율이 높지 않다. 하지만 용액 공정을 이용하면 대기압에서 증착이 가능하고 대면적화가 가능하다. 그리고 각각의 조성비를 조절하는 것이 가능하다. 이러한 장점에도 불구하고, 소자의 신뢰성이나 저온공정은 중요한 이슈이다. Instability는 threshold voltage (Vth)의 shift 및 on/off switching의 신뢰성과 관련된 parameter이다. 용액은 소자의 전기적 특성을 열화 시키는 수분 과 탄소계열의 불순물을 다량 포함 하고 있어 고품질의 박막을 형성하기 위해서는 고온의 열처리가 필요하다. 기존의 열처리는 고온에서 장시간 이루어지기 때문에 유리나 플라스틱, 종이 기판의 소자에서는 불가능하지만 $100^{\circ}C$ 이하의 저온 공정인 microwave를 이용하면 유리, 플라스틱, 종이 기판에서도 적용이 가능하다. 본 연구에서는 산화물 반도체 중에서 InGaZnO (IGZO)를 용액 공정으로 제작한 juctionless thin-film transistor를 제작하여 기존의 열처리를 이용하여 처리한 소자와 microwave를 이용해서 열처리한 소자의 전기적 특성을 한 달 동안 관찰 하였다. 또한 In:Zn의 비율을 고정한 후 Ga의 비율을 달리하여 특성을 비교하였다. 먼저 p-type bulk silicon 위에 SiO2 산화막이 100 nm 증착된 기판에 RCA 클리닝을 진행 하였고, solution InGaZnO 용액을 spin coating 방식으로 증착하였다. Coating 후에, solvent와 수분을 제거하기 위해서 $180^{\circ}C$에서 10분 동안 baking공정을 하였다. 이후 furnace열처리와 microwave열처리를 비교하기 위해 post-deposition-annealing (PDA)으로 furnace N2 분위기에서 $600^{\circ}C$에서 30분, microwave를 1800 W로 2분 동안 각각의 샘플에 진행하였다. 또한, HP 4156B semiconductor parameter analyzer를 이용하여 제작된 TFT의 transfer curve를 측정하였다. 그 결과, microwave 열처리한 소자의 경우 기존의 furnace 열처리 소자와 비교하여 높은 mobility, 낮은 hysteresis 값을 나타내었으며, 1달간 소자의 특성을 관찰하였을 때 microwave 열처리한 소자의 경우 전기적 특성이 거의 변하지 않는 것을 확인하였다. 따라서 향후 용액공정, 저온공정을 요구하는 소자 공정에 있어 열처리방법으로 microwave를 이용한 활용이 기대된다.

  • PDF

Fabrication of PbZrO$_3$ thin films crystal by sol-gel processing (Sol-Gel법에 의한 PbZrO$_3$박막 결정의 제작)

  • 전기범;김원보;배세환
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.211-218
    • /
    • 2000
  • $PbZrO_3$precursor was prepared for the spin coating on the Pt/Ti/$SiO_2$/Si substrate. Two different heat treatment methods were used and the differencies were studied. One of the method is that the films were inserted into the furnace for 30 minutes and the other is that the films were annealed by rapid thermal annealing (RTA) for 1 minute at the same temperatures. We also examined the tendency of crystallization by annealing at the fixed temperature, $700^{\circ}C$ as a function of time, namely during 1, 10, 20, and 30 minitues, respectively. The optimum conditions for the crystallization of these films were at $550^{\circ}C$ during 30 min. and at $700^{\circ}C$ during 10 min. in muffle furnace and at $650^{\circ}C$ during 1 min in RTA furnace. The best condition for making good quality grains needs 30 min. at $700^{\circ}C$.

  • PDF

Magnetostriction Measurement of an $Fe_49Co_49V_2$ Alloy using the Michelson Laser Interferometer Compensated by Feedback Signal (궤환신호로 보상되는 Michelson 레이저 간섭계를 이용한 $Fe_49Co_49V_2$ 합금의 자기변형 측정)

  • 안승준;김철기;김호섭;김호철;남궁정
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.5
    • /
    • pp.246-249
    • /
    • 2000
  • An Fe$_{49}$ Co$_{49}$ V$_2$alloy is annealed in thermal annealing furnace at 50$0^{\circ}C$, 75$0^{\circ}C$, 80$0^{\circ}C$, and 90$0^{\circ}C$. Annealed samples were cooled in air. The magnetostriction is measured by using a Michelson laser interferometer. Receiving the feedback signal of interference, a mirror attached to piezoelectric transducer (PZT) maintains the optical path length (OPL) between two arms of laser interferometer relatively constant. The feedback voltage is calibrated to the OPL variation. A magnetostriction of 2$\times$10$^{-6}$ at H = 60 Oe increases up to 33.68$\times$10$^{-6}$ at an annealing temperature of 90$0^{\circ}C$, suggesting that the magnetostrictive characteristics are improved by the microstructural modification.

  • PDF

Optimization of ZnO-based transparent conducting oxides for thin-film solar cells based on the correlations of structural, electrical, and optical properties (ZnO 박막의 구조적, 전기적, 광학적 특성간의 상관관계를 고려한 박막태양전지용 투명전극 최적화 연구)

  • Oh, Joon-Ho;Kim, Kyoung-Kook;Song, Jun-Hyuk;Seong, Tae-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.42.2-42.2
    • /
    • 2010
  • Transparent conducting oxides (TCOs) are of significant importance for their applications in various devices, such as light-emitting diodes, thin-film solar cells, organic light-emitting diodes, liquid crystal displays, and so on. In order for TCOs to contribute to the performance improvement of these devices, TCOs should have high transmittance and good electrical properties simultaneously. Sn-doped $In_2O_3$ (ITO) is the most commonly used TCO. However, indium is toxic and scarce in nature. Thus, ZnO has attracted a lot of attention because of the possibility for replacing ITO. In particular, group III impurity-doped ZnO showed the optoelectronic properties comparable to those of ITO electrodes. Al-doped ZnO exhibited the best performance among various doped ZnO films because of the high substitutional doping efficiency. However, in order for the Al-doped ZnO to replace ITO in electronic devices, their electrical and optical properties should further significantly be improved. In this connection, different ways such as a variation of deposition conditions, different deposition techniques, and post-deposition annealing processes have been investigated so far. Among the deposition methods, RF magnetron sputtering has been extensively used because of the easiness in controlling deposition parameters and its fast deposition rate. In addition, when combined with post-deposition annealing in a reducing ambient, the optoelectronic properties of Al-doped ZnO films were found to be further improved. In this presentation, we deposited Al-doped ZnO (ZnO:$Al_2O_3$ = 98:2 wt%) thin films on the glass and sapphire substrates using RF magnetron sputtering as a function of substrate temperature. In addition, the ZnO samples were annealed in different conditions, e.g., rapid thermal annealing (RTA) at $900^{\circ}C$ in $N_2$ ambient for 1 min, tube-furnace annealing at $500^{\circ}C$ in $N_2:H_2$=9:1 gas flow for 1 hour, or RTA combined with tube-furnace annealing. It is found that the mobilities and carrier concentrations of the samples are dependent on growth temperature followed by one of three subsequent post-deposition annealing conditions.

  • PDF

The effect of annealing conditions on ultra shallow $ p^+-n$ junctions formed by low energy ion implantation (저에너지 이온 주입 방법으로 형성된 박막$ p^+-n$ 접합의 열처리 조건에 따른 특성)

  • 김재영;이충근;홍신남
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.5
    • /
    • pp.37-42
    • /
    • 2004
  • Shallow $p^{+}$-n junctions were formed by preamorphization, low-energy ion implantation and dual-step annealing processes. Germanium ions were implanted into silicon substrates for preamorphization. The dopant implantation was performed into the preamorphized and non-preamorphized substrates using B $F_2$2 ions. Rapid thermal anneal (RTA) and furnace anneal (FA) were employed for dopant activation and damage removal. Samples were annealed by one of the following four methods; RTA(75$0^{\circ}C$/10s)+Ft FA+RTA(75$0^{\circ}C$/10s), RTA(100$0^{\circ}C$/10s)+FA, FA+The Ge Preamorphized sample exhibited a shallower junction depth than the non-preamorphized sample. When the employed RTA temperature was 100$0^{\circ}C$, FA+RTA annealing sequence exhibited better junction characteristics than RTA+FA thermal cycle from the viewpoint of junction depth, sheet resistance, $R_{s}$$.$ $x_{j}$, and leakage current.t.

A Study on the Annealed Properties of ITO Thin Film Deposited by RF-superimposed DC Reactive Magnetron Sputtering (RF/DC 동시인가 마그네트론 스퍼터링 방법으로 증착된 ITO 박막의 열처리 특성 연구)

  • Moon, Jin-Wook;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.3
    • /
    • pp.117-124
    • /
    • 2007
  • The ITO films were deposited on glass substrates by RF-superimposed dc reactive magnetron sputtering and were annealed in $N_2$ vacuum furnace with temperatures in the range of $403K{\sim}573K$ for 30 minutes. Electrical, optical and structural properties of ITO films were examined with varying annealing temperatures from 403 K to 573 K. The resistivity of as-deposited ITO films was $5.4{\times}10^{-4}{\Omega}cm$ at the sputter conditions of applied RF/DC power of 200/200 W, $O_{2}$ flow of 0.2 seem and Ar flow of 0.2 seem. As a result of annealing in the temperature range of $403K{\sim}573K$, the crystallization occurred at 423 K that is lower than the crystallization temperature caused by a conventional sputtering method. And the resistivity decreased from $5.4{\times}10^{-4}{\Omega}cm\;to\;2.3{\times}10^{-4}{\Omega}cm$, the carrier concentration and mobility of ITO films increased from $4.9{\times}10^{20}/cm^3\;to\;6.4{\times}10^{20}/cm^3$, from $20.4cm^2/Vsec\;to\;41.0cm^2/Vsec$, respectively. The transmittance of ITO films in visible became higher than 90% when annealed in the temperature range of $423K{\sim}573K$. High quality ITO thin films made by RF-superimposed dc reactive magnetron sputtering and annealing in $N_2$ vacuum furnace will be applied to transparent conductive oxides of the advanced flat panel display.

A Study on Temperature Variation of Coil on BAF Annealing in HNx Atmospheric Gas (HNx 분위기가스중에서 BAF소둔시 코일의 온도변화에 관한 연구)

  • 전언찬;김순경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1227-1234
    • /
    • 1994
  • A cold spot temperature control system for the batch annealing furnace has been established in order to reduce energy consumption which is essential to improve productivity and stabilize the properties of products. A relationship between annealing cycle time and gas flow rate is developed and also for the variation of coil cold spot temperature with time during heating, and actual temperature measurements at mid-width of each coil during soaking. The results of the temperature variation effect on the cold rolled steel sheet batch annealing are as follows. (1) Cooling rate increasing gradually with increasing atmospheric gas flow, but heating rate is hardly increasing without atmospheric gas component change. (2) In case of short time heating, the slowest heating part is the center of B coil and in case of ling time heating, the low temperature point moves from the center of coil to inside coil. (3) The outside of top coil is the highest temperature point under heating, which becomes the lowest temperature point under cooling. (4) Soaking time determination depends on the input coil width, and soaking time for quality homogenization of 1214 mm width coil must be 2 hours longer than that of 914 mm width coil.

Microstructure and Characterisistics of Near Surface of $As^+$Ion Implanted Si (A$s^+$이온을 주입시킨 Si 표면부 미세구조와 특성)

  • Shin, D.W.;Choi, C.;Park, C.G.;Kim, J.C.
    • Korean Journal of Materials Research
    • /
    • v.2 no.3
    • /
    • pp.213-219
    • /
    • 1992
  • The microstructure, dopant distribution and electrical properties of the $As^{+}$ ion-implanted surface layer differ significantly depending on the methods of subsequent heat treatments, furnace annealing(FA) and rapid thermal annealing(RTA). The amorphous layer created by ion implantation was recrystallized during the thermal annealing through solid phase epitaxial (SPE) growth. The dopant distribution and electrical properties are discussed with respect to the TEM cross-sectional microstructure observed. The microstructure, dopant distribution and electrical properties depended upon especially the annealing time of the heat treatment.

  • PDF