• Title/Summary/Keyword: Furan-chalcone

Search Result 3, Processing Time 0.014 seconds

Synthesis of Heterocyclic Chalcone Derivatives and Their Radical Scavenging Ability Toward 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Free Radicals

  • Hwang, Ki-Jun;Kim, Ho-Seok;Han, In-Cheol;Kim, Beom-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2585-2591
    • /
    • 2012
  • A series of heterocyclic chalcone derivatives bearing heterocycles such as thiophene or furan ring as an isostere of benzene ring were carefully prepared, and the influence of heterocycles on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities was systematically investigated. Structure-activity relationships (SAR) analysis showed that the activities of thiophene ring-containing chalcones were higher than those of furan ring-containing chalcones, and the presence of methyl substituent of heterocyclic ring distinctly affected the activities compared with non-substituted heterocycles in an opposite manner, with the 4'-methyl group of thiophene ring increasing activity and the 3'-methyl group of the furan ring decreasing activity. The distinct isosteric effect of heterocycles (i.e., thiophene or furan ring) on radical scavenging activities of heterocyclic chalones was distinctly demonstrated in our work.

Chalcones as Novel Non-peptidic μ-Calpain Inhibitors

  • Lee, Eun-Young;Jang, In-Hye;Shin, Min-Jung;Cho, Hee-Ju;Kim, Jung-Sook;Eom, Ji-Eun;Kwon, Young-Joo;Na, Young-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3459-3464
    • /
    • 2011
  • In order to extend the scaffold of non-peptidic calpain inhibitor, we have designed and synthesized 14 chalcone derivatives categorized into two groups based on their structures. Compounds 7 ($IC_{50}=16.67{\pm}0.42{\mu}M$) and 8 ($IC_{50}=16.92{\pm}0.14{\mu}M$) in group A were most selective ${\mu}$-calpain inhibitor over cathepsins B and L. On the other hand, compound 14 possessing furan ring exhibited inhibitory activities for ${\mu}$-calpain ($IC_{50}=15.39{\pm}1.34{\mu}M$) as well as cathepsin B ($IC_{50}=20.59{\pm}1.35{\mu}M$). The results discovered implicated that chalcone analogues possessing proper size and functional groups can be a potential lead core for selective non-peptidic ${\mu}$-calpain inhibitor. Furthermore, dual inhibitors for ${\mu}$-calpain and cathepsin B can also be developed from chalcones by elaborate structure manipulation.