• Title/Summary/Keyword: Fungus resistance

Search Result 186, Processing Time 0.03 seconds

QTL Mapping of Resistance to Gray Leaf Spot in Ryegrass: Consistency of QTL between Two Mapping Populations

  • Curley, J.;Chakraborty, N.;Chang, S.;Jung, G.
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.1
    • /
    • pp.85-100
    • /
    • 2008
  • Gray leaf spot (GLS) is a serious fungal disease caused by Pyricularia oryzae Cavara, recently reported on the important turf and forage species, perennial ryegrass (Lolium perenneL.). This fungus also causes rice blast, which is usually controlled by host resistance, but durability of resistance is a problem. Few instances of GLS resistance have been reported in perennial ryegrass. However, two major QTL for GLS resistance have been detected on linkage groups 3 and 6 in an Italian x perennial ryegrass mapping population. To confirm that those QTL are still detectable in the next generation and can function in a different genetic background, a resistant segregant from this population has been crossed with an unrelated susceptible perennial clone, to form a new mapping population segregating for GLS resistance. QTL analysis has been performed in the new population, using two different ryegrass field isolates and RAPD, RFLP, and SSR marker-based linkage maps for each parent. Results indicate the previously identified QTL on linkage group 3 is still significant in the new population, with LOD and percent of phenotypic variance explained ranging from 2.0 to 3.5 and 5% to 10%, respectively. Also two QTL were detected in the susceptible parent, with similar LOD and phenotypic variance explained. Although the linkage group 6 QTL was not detected, the major QTL on linkage group 3 appears to beconfirmed. These results will add to our understanding of the genetic architecture of GLS resistance in ryegrass, which will facilitate its use in perennial ryegrass breeding programs.

Genetic Transformation of Irpex lacterus and Phlebia tremellosa to an Antibiotic Resistance (아교버섯과 기계충버섯의 형질전환)

  • Kim, Yun-Jung;Kim, Myung-Kil;Song, Hong-Gyu;Choi, Hyoung-T.
    • Korean Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.147-149
    • /
    • 2007
  • White-rot fungi which degrade lignin can also degrade diverse recalcitrant compounds such as polymeric dyes, explosives, pesticides, and endocrine disrupting chemicals. Lignin degrading enzymes are involved in the degradation reactions, and introduction of foreign genes into a white-rot fungus is required in order to increase the degrading capacity. Genetic transformation experiment has been carried out in Irpex lacteus and Phlebia tremellosa to an antibiotic resistance. The transformation yields were 50-70 transformants/${\mu}g$ DNA and 15-25 transformants/${\mu}g$ DNA in I. lacteus and P. tremellosa, respectively. The stable replication of the plasmid was confirmed by PCR using the plasmid-specific primers, and many mutants were generated during this integration in both fungi.

Resistance of Botryosphaeria dothidea to Benomyl (사과 겹무늬썩음병균(Botryosphaeria dothidea)의 Benomyl에 대한 저항성)

  • Lee, Chang-Un;Park, Seok-Hee
    • The Korean Journal of Mycology
    • /
    • v.22 no.3
    • /
    • pp.260-265
    • /
    • 1994
  • Since around 1980 apple rot caused by Botryosphaeria dothidea has become prevalent throughout the growing areas in Korea, during which period chemical controls have been executed with no notable improvement. Results of investigations on resistance of the causal fungus to its control chemical are as followings; The susceptible fungal isolates showed no mycelial growth at $150\;{\mu}g/ml$ of benomyl whereas the resistant isolates showed 7-13 mm growth at $300\;{\mu}g/ml$ and 6-8 mm at $2,400\;{\mu}g/ml$ of this fungicide. At the latter high concentration, spore germination of the resistant isolates was 5-9% while that of the susceptible isolates was 0%. Within the range of $20-2,400\;{\mu}g/ml$ tested, the susceptible isolates were unable to form pycnidia, but the resistant isolates formed abundant pycnidia at the lower concentration with decreasing pycnidia along with the higher concentration.

  • PDF

Magnaporthe oryzae Effector AVR-Pii Helps to Establish Compatibility by Inhibition of the Rice NADP-Malic Enzyme Resulting in Disruption of Oxidative Burst and Host Innate Immunity

  • Singh, Raksha;Dangol, Sarmina;Chen, Yafei;Choi, Jihyun;Cho, Yoon-Seong;Lee, Jea-Eun;Choi, Mi-Ok;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • v.39 no.5
    • /
    • pp.426-438
    • /
    • 2016
  • Plant disease resistance occurs as a hypersensitive response (HR) at the site of attempted pathogen invasion. This specific event is initiated in response to recognition of pathogen-associated molecular pattern (PAMP) and subsequent PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). Both PTI and ETI mechanisms are tightly connected with reactive oxygen species (ROS) production and disease resistance that involves distinct biphasic ROS production as one of its pivotal plant immune responses. This unique oxidative burst is strongly dependent on the resistant cultivars because a monophasic ROS burst is a hallmark of the susceptible cultivars. However, the cause of the differential ROS burst remains unknown. In the study here, we revealed the plausible underlying mechanism of the differential ROS burst through functional understanding of the Magnaporthe oryzae (M. oryzae) AVR effector, AVR-Pii. We performed yeast two-hybrid (Y2H) screening using AVR-Pii as bait and isolated rice NADP-malic enzyme2 (Os-NADP-ME2) as the rice target protein. To our surprise, deletion of the rice Os-NADP-ME2 gene in a resistant rice cultivar disrupted innate immunity against the rice blast fungus. Malic enzyme activity and inhibition studies demonstrated that AVR-Pii proteins specifically inhibit in vitro NADP-ME activity. Overall, we demonstrate that rice blast fungus, M. oryzae attenuates the host ROS burst via AVR-Pii-mediated inhibition of Os-NADP-ME2, which is indispensable in ROS metabolism for the innate immunity of rice. This characterization of the regulation of the host oxidative burst will help to elucidate how the products of AVR genes function associated with virulence of the pathogen.

Identification and Characterization of the Aquaporin Gene aqpA in a Filamentous Fungus Aspergillus nidulans (사상성 진균 Aspergillus nidulans에서 아쿠아포린 유전자 aqpA의 분리 및 분석)

  • Oh, Dong-Soon;Lu, Han-Yan;Han, Kap-Hoon
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.295-301
    • /
    • 2011
  • Aquaporin is a water channel protein, which is classified as Major Intrinsic Protein (MIP), found in almost all organisms from bacteria to human. To date, more than 200 members of this family were identified. There are two major categories of MIP channels, orthodox aquaporins and aquaglyceroporins, which facilitate the diffusion across biological membranes of water or glycerol and other uncharged compounds, respectively. The full genome sequencing of various fungal species revealed 3 to 5 aquaporins in their genome. Although some functions of aquaporins found in yeast were characterized, however, no functional characteristics were studied so far in filamentous fungi, including Aspergillus sp. In this study, one orthodox aquaporin homolog gene, aqpA, and four aquaglyceroporin homologs, aqpB-E, in a model filamentous fungus Aspergillus nidulans were identified and the function of the aqpA gene was characterized. Knock-out of the aqpA gene didn't show any obvious phenotypic change under the osmotic stress, indicating that the function of the gene does not involved in the osmotic stress response or the function could be redundant. However, the mutant showed antifungal susceptibility resistance phenotype, suggesting that the function of the aqpA gene could be involved in sensing the antifungal substances rather than the osmotic stress response.

Development of molecular marker to select resistant lines and to differentiate the races related to powdery mildew in melon (Cucumis melo L.) (멜론 흰가루병의 race 분화 및 저항성 계통 선발을 위한 분자마커 개발)

  • Kim, Hoy-taek;Park, Jong-in;Ishikawa, Tomoko;Kuzuya, Maki;Horii, Manabu;Yashiro, Katsutoshi;Nou, Ill-sup
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.284-289
    • /
    • 2015
  • Powdery mildew (Podosphaera xanthii) commonly occurs in cultivated fields of melon (Cucumis melo L.). It inflicts a lot of damages. Therefore, breeding resistant lines is essential. Development of a resistant line by integrating resistance gene takes a long time. In addition, break down of developed resistance by generating new virulent fungus strains increases disease susceptibility. This phenomenon was related to races of powdery mildew. Therefore, it is important to develop a DNA marker to genetically analyze race-specific resistance genes of melon powdery mildew to breed resistant lines. To date, a total of 28 races of Podosphaera xanthii have been reported in the literature. In Japan, 10 races have been reported in the Ibaraki region. We developed a system to characterize the races of Podosphaera xanthii and confirmed eight out of those 10 races in the Ibaraki region. In Korea, only one race has been characterized to date. However, some different races were detected. Through genetic analysis of resistant lines and susceptible lines of powdery mildew, resistance genes of race1 (Pm-X, PXB, and Pm-R 1), race N1 (PXA), race 2 (Pm-w and Pm-R 2), race 3 (Pm-X3), and race 5 (Pm-X5 and Pm-R5) were identified in melon. These related genes of race 1, 3, N1, 5, and race 1, 2, 5 were located at linkage group II and V, respectively. In race 1, resistance gene was located in the linkage group XII. In addition, each race-specific marker related to specific resistance gene was developed. Using race information and race selection system obtained in this study, resistant line can be bred to develop resistant cultivar for several areas. Furthermore, this will make it more easily and economically to breed resistant lines by using selected markers.

Studies on Varietal Resistance to Sheath Blight Disease in Rice II. Varietal Difference of Resistance (벼 품종의 잎집무늬마름병 저항성 연구 II. 품종간 저항성의 차이)

  • Kim, Kwang-Ho;Yang, Kae-Jin;Lee, Sang-Bok
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.3
    • /
    • pp.302-309
    • /
    • 1987
  • One hundred rice varieties were tested for their level of resistance to sheath blight disease at adult plant stage in field condition through 1984 to 1986. Rice plants were grown under ordinary seasonal culture and inoculated by k-2 fungus isolate during three years. k -1 isolate was also inoculated separately in 1984 and test under late seasonal culture was conducted in separate field in 1985. Degree of damage by the disease observed at 25 days after heading was used to identify the level of resistance of the rice varieties tested. Varietal differences of degree of damage were significant in five tests during three years, and the genotypic variance of degree of damage was always higher than environmental variance among varieties tested. Positive correlations between testing years, between cultural seasons, and between isolates inoculated were found in degree of damage of varieties tested for two or three years continuously. Degree of damage by the disease was correlated negatively with heading date of rice varieties except 1984 tests. Thus, the level of resistance should be compared among the variety group having almost same heading date in field condition, and late and extremely late variety groups should be tested for their level of resistance under appropriate environmental condition. Gayabyo, an early heading variety, and SR9713-54-3, a medium heading breeding line, showed consistent lower value of degree of damage during two or three years. These two varieties were selected as moderate resistant germplasm.

  • PDF

Characterization of Entomopathogenic Fungus from Trialeurodes vaporariorum and Evaluation as Insecticide (온실가루이 병원성 곰팡이의 특성 및 살충제 개발을 위한 평가)

  • Yoon, Hwi Gun;Shin, Tae Young;Yu, Mi Ra;Lee, Won Woo;Ko, Seung Hyun;Bae, Sung Min;Choi, Jae Bang;Woo, Soo Dong
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.64-70
    • /
    • 2013
  • The greenhouse whitefly, Trialeurodes vaporariorum, is an economically important pest for greenhouse crops because they cause direct damage by feeding on plant nutrients and indirect damage as transmits many virus vectors. It has recently become a serious problem because of the continuous use of insecticide resulting in resistance among greenhouse whitefly population. To overcome these problems, in this study, the biological characteristics and virulence of an entomopathogenic fungus isolated from the cadaver of nymph greenhouse whitefly were investigated. Isolated fungus was identified as Isaria fumosorosea by morphological examinations and genetic identification using sequences of the ITS, ${\beta}$-tubulin, and EF1-${\alpha}$ regions. This fungus was named as I. fumosorosea SDTv and tested for the virulence against nymphs T. vaporariorum and the cold activity, the thermotolerance and the stability of UV-B irradiation on conidia. Mortality rate of greenhouse whitefly showed from 84 to 100% and the virulence increased with increasing conidial concentrations, $1{\times}10^5$ to $10^8$ conidia/ml. Conidia were stable at $35^{\circ}C$, 0.1 $J/cm^2$ of UV irradiation and germinated after 8 days at $4^{\circ}C$. Additionally, the activities of chitinases and proteases produced by I. fumosorosea SDTv were varied according to the medium. In conclusion, I. fumosorosea SDTv which showed high mortality rate against greenhouse whitefly will be used effectively in the integrated pest management programs against the greenhouse whitefly.

Evaluation of Cabbage- and Broccoli-genetic Resources for Resistance to Clubroot and Fusarium Wilt (뿌리혹병 및 시들음병에 대한 저항성 양배추와 브로콜리 유전자원 탐색)

  • Lee, Ji Hyun;Jo, Eun Ju;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Jin-Cheol;Choi, Gyung Ja
    • Research in Plant Disease
    • /
    • v.20 no.4
    • /
    • pp.235-244
    • /
    • 2014
  • Clubroot and Fusarium wilt of cole crops (Brassica oleracea L.) are destructive diseases which for many years has brought a decline in quality and large losses in yields all over the world. The breeding of resistant cultivars is an effective approach to reduce the use of chemical fungicides and minimize crop losses. This study was conducted to evaluate the resistance of 60 cabbage (B. oleracea var. capitata) and 6 broccoli (B. oleracea var. italica) lines provided by The RDA-Genebank Information Center to clubroot and Fusarium wilt. To investigate resistance to clubroot, seedlings of the genetic resources were inoculated with Plasmodiophora brassicae by drenching the roots with a mixed spore suspension (1 : 1) of two isolates. Of the tested genetic resources, four cabbage lines were moderately resistant and 'K166220' represented the highest resistance to P. brassicae. The others were susceptible to clubroot. On the other hand, to select resistant plants to Fusarium wilt, the genetic resources were inoculated with Fusarium oxysporum f. sp. conglutinans by dipping the roots in spore suspension of the fungus. Among them, 17 cabbage and 5 broccoli lines were resistant, 16 cabbage lines were moderately resistant, and the others were susceptible to Fusarium wilt. Especially, three cabbage ('IT227115', 'K161791', 'K173350') and two broccoli ('IT227100', 'IT227099') lines were highly resistant to the fungus. We suggest that the resistant genetic resources can be used as a basic material for resistant B. oleracea breeding system against clubroot and Fusarium wilt.

Effects of Acid Concentration and the Addition of Copper/Boron Salts on the Efficacy of Okara-based Wood Preservatives (두부(豆腐)비지 산(酸) 가수분해물(加水分解物)로 조제(調製)한 목재방부제(木材防腐劑)에서 산(酸) 농도(濃度)와 구리/붕소계(硼素系) 염(鹽) 첨가(添加)에 따른 방부능(防腐能)의 영향(影響))

  • Jeong, Han-Seob;Kim, Ho-Yong;Ahn, Sye-Hee;Choi, In-Gyu;Oh, Sei-Chang;Han, Gyu-Seong;Yang, In
    • Resources Recycling
    • /
    • v.18 no.5
    • /
    • pp.52-62
    • /
    • 2009
  • This research was carried out to formulate environmentally friendly wood preservatives with okara and to investigate the effects of the acid concentration used for the hydrolysis of okara and salt type on the decay resistance of the preservatives. Okara-based preservatives were formulated with okara hydrolyzates, which were prepared with 0, 1%, and 2% sulfuric acid at $25^{\circ}C$ for 1 hr, and salts such as copper chloride and/or sodium borate. The preservatives were treated into wood blocks by vacuum-pressure method, and then the treated wood blocks were leached in $70^{\circ}C$ hot water for 72 hrs. The fungal treatments of the leached wood blocks were conducted by brown-rot fungus, Tyromyces palustris, and white-rot fungus, Trametes versicolor, to examine the decay resistance of the preservatives. As the acid concentration used for hydrolysis of okara increased, the treat-ability and decay resistance of the preservatives were improved, which the leachability was decreased. Wood blocks treated with the okara/copper or okara/copper/borax, showed very good decay resistance against T. palustris and T. versicolor. However, wood blocks treated with the okara/borax and okara-free preservative solutions, were observed the fungal decay by T. palustris. The optimal conditions for the preparation of okara-based wood preservatives were formulated with okara hydrolyzed with 1% sulfuric acid, copper chloride and borax.