• Title/Summary/Keyword: Fungicides resistance

Search Result 103, Processing Time 0.022 seconds

Fungicide Resistance and Genetic Diversity of Botrytis cinerea of Citrus (감귤 잿빛곰팡이병균의 살균제에 대한 저항성 및 유전적 다양성)

  • 고영진;이재군;서정규;문두길;한해룡
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.682-688
    • /
    • 1998
  • Fungicide resistance of 48 isolates of Botrytis cinerea collected from citrus in Cheju was investigated and genetic diversity was analyzed with random amplified polymorphic DNA(RAPD). High levels of resistance to benzimidazole fungicides benomyl and thiophanate-methyl and N-phenylcarbamate fungicide diethofencarb were observed. Negative cross resistance was clear between benzimidazole and N-phenylcarbamate fungicides, and multiple resistance to the fungicides was also observed. There was cross resistance among the dicarboximide fungicides procymidione, vinclozolin and iprodione as it was observed between the benzimidazole fungicides benomyl and thiophanate-methyl. The lowest levels of resistance were to the dicarboximide fungicides, but no sensitive isolate to polyoxin B was observed. The isolates showed genetically diverse RAPD profiles according to the geographic origin collected, but there was no significant correaltion between RAPD profiles of genomic DNA and the levels of fungicide resistance of the isolates. The isolates showed genetically diverse RAPD profiles, indicating that genetic differentiation had already occurred in the populations of B. cinerea distributed in Cheju.

  • PDF

Triazole Fungicides Sensitivity of Sclerotinia homoeocarpa in Korean Golf Courses

  • Lee, Ji Won;Choi, Jihye;Kim, Jin-Won
    • The Plant Pathology Journal
    • /
    • v.33 no.6
    • /
    • pp.589-596
    • /
    • 2017
  • Chemical management of dollar spot in turf may lead to the development of Sclerotinia homoeocarpa populations with reduced fungicide sensitivity. The objective of this study was to investigate resistance of S. homoeocarpa isolates to triazole fungicides and to test cross-resistance among three triazole fungicides. A total of 66 isolates of S. homoeocarpa were collected from 15 golf courses across Korea, and tested via in vitro sensitivity assay against hexaconazole, propiconazole and tebuconazole. $EC_{50}$ values of the isolates to these fungicides were distributed in the range of $0.001-1.1\;a.\;i.\;{\mu}g\;ml^{-1}$. Based on the $EC_{50}$ values, twelve representative strains were selected as sensitive isolates including control and insensitive isolates with respect to each fungicide. At a concentration of $0.1\;a.\;i.\;{\mu}g\;ml^{-1}$ for all fungicides, the selected strains were distinguished as sensitive or resistant isolates with the mycelial growth inhibition rate of 50% as the criterion. The $EC_{50}$ values of resistant strains exposed to hexaconazole, propiconazole and tebuconazole were 20-50 times, 50-70 times, and 77 times greater, respectively, than that of the control strains. Two isolates of S. homoeocarpa S0-41 and Sh14-2-1 showed sensitivity toward all the fungicides used, while two other isolates Sh7-5-1 and Sh2-1-1 showed resistance to all fungicides. Each isolate showed similar resistance to the three types of triazole fungicides, whereby cross-resistance of isolates was confirmed in the present study; all three triazole fungicide combinations displayed significant correlation coefficients equivalent to or greater than 0.8.

Feasible Management of Southern Corn Leaf Blight via Induction of Systemic Resistance by Bacillus cereus C1L in Combination with Reduced Use of Dithiocarbamate Fungicides

  • Lai, Yi-Ru;Lin, Pei-Yu;Chen, Chao-Ying;Huang, Chien-Jui
    • The Plant Pathology Journal
    • /
    • v.32 no.5
    • /
    • pp.481-488
    • /
    • 2016
  • Dithiocarbamate fungicides such as maneb and mancozeb are widely used nonsystemic protectant fungicides to control various plant fungal diseases. Dithiocarbamate fungicides should be frequently applied to achieve optimal efficacy of disease control and avoid either decline in effectiveness or wash-off from leaf surface. Dithiocarbamates are of low resistance risk but have the potential to cause human neurological diseases. The objective of this study was to develop a strategy to effectively control plant disease with reduced use of dithiocarbamtes. Southern corn leaf blight was the model pathosystem for the investigation. When corn plants were drench-treated with Bacillus cereus C1L, a rhizobacterium able to induce systemic resistance in corn plants against southern leaf blight, frequency of spraying dithiocarbamate fungicides could be decreased. The treatment of B. cereus C1L was able to protect maize from southern leaf blight while residues of dithiocarbamates on leaf surface were too low to provide sufficient protection. On the other hand, frequent sprays of mancozeb slightly but significantly reduced growth of corn plants under natural conditions. In contrast, application of B. cereus C1L can significantly promote growth of corn plants whether sprayed with mancozeb or not. Our results provide the information that plant disease can be well controlled by rhizobacteria-mediated induced systemic resistance in combination with reduced but appropriate application of dithiocarbamate fungicides just before a heavy infection period. An appropriate use of rhizobacteria can enhance plant growth and help plants overcome negative effects caused by dithiocarbamates.

Enhancement of Disease Control Efficacy of Chemical Fungicides Combined with Plant Resistance Inducer 2,3-Butanediol against Turfgrass Fungal Diseases

  • Duraisamy, Kalaiselvi;Ha, Areum;Kim, Jongmun;Park, Ae Ran;Kim, Bora;Song, Chan Woo;Song, Hyohak;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.38 no.3
    • /
    • pp.182-193
    • /
    • 2022
  • Turfgrass, the most widely grown ornamental crop, is severely affected by fungal pathogens including Sclerotinia homoeocarpa, Rhizoctonia solani, and Magnaporthe poae. At present, turfgrass fungal disease management predominantly relies on synthetic fungicide treatments. However, the extensive application of fungicides to the soil increases residual detection frequency, raising concerns for the environment and human health. The bacterial volatile compound, 2,3-butanediol (BDO), was found to induce plant resistance. In this study, we evaluated the disease control efficacy of a combination of stereoisomers of 2,3-BDO and commercial fungicides against turfgrass fungal diseases in both growth room and fields. In the growth room experiment, the combination of 0.9% 2R,3R-BDO (levo) soluble liquid (SL) formulation and 9% 2R,3S-BDO (meso) SL with half concentration of fungicides significantly increased the disease control efficacy against dollar spot and summer patch disease when compared to the half concentration of fungicide alone. In field experiments, the disease control efficiency of levo 0.9% and meso 9% SL, in combination with a fungicide, was confirmed against dollar spot and large patch disease. Additionally, the induction of defense-related genes involved in the salicylic acid and jasmonic acid/ethylene signaling pathways and reactive oxygen species detoxification-related genes under Clarireedia sp. infection was confirmed with levo 0.9% and meso 9% SL treatment in creeping bentgrass. Our findings suggest that 2,3-BDO isomer formulations can be combined with chemical fungicides as a new integrated tool to control Clarireedia sp. infection in turfgrass, thereby reducing the use of chemical fungicides.

Cross-resistance of Colletotrichum acutatum s. lat. to Strobilurin Fungicides and Inhibitory Effect of Fungicides with Other Mechanisms on C. acutatum s. lat. Resistant to Pyraclostrobin (Strobilurin계 살균제에 대한 고추탄저병균의 교차저항성과 Pyraclostrobin 저항성균에 대한 다른 기작 살균제의 억제 효과)

  • Park, Subin;Kim, Heung Tae
    • Research in Plant Disease
    • /
    • v.28 no.3
    • /
    • pp.122-131
    • /
    • 2022
  • Colletotrichum acutatum s. lat. 20JDS8 sensitive and 20CDJ6 resistant to pylaclostrobin were used to investigate the cross-resistance with fungicides belonging to the strobilurins and the characteristics of fungicidal controlling activities with different mechanisms against the isolate resistant to the fungicide. The resistant isolate of 20CDJ6 also showed the resistance to azoxystrobin, trifloxystrobin, and kresoxim-methyl, suggesting that there is a cross-resistance relationship. All fungicides with different action mechanisms inhibited mycelial growth of both susceptible and resistant isolates of C. acutatum s. lat., but their disease control effects in fruits were different according to the fungicides. The disease control effect of isopyrazam against 20JDS8 and 20CDJ6 was very low, and fluazinam showed a control effect of 91.9% and 88.1% against 20JDS8 and 20CDJ6 only when it was treated before inoculation by spraying spore suspensions on pepper fruits without wounds. Tebuconazole and prochloraz effectively inhibited not only the mycelial growth of 20JDS8 and 20CDJ6 on potato dextrose agar medium, but also disease incidence in red pepper fruits. As a result of this study, C. acutatum s. lat. 20CDJ6 resistant to pyraclostrobin showed cross-resistance with other strobilurin fungicides. In addition, we think that fluazinam, tebuconazole, and prochloraz can be recommended as alternative fungicides for the control of red-pepper pyranthracnose pathogens resistant pyraclostrobin. However, fluazinam can be effective only if it is treated protectively before the occurrence of the disease.

Molecular Mechanisms of Succinate Dehydrogenase Inhibitor Resistance in Phytopathogenic Fungi

  • Sang, Hyunkyu;Lee, Hyang Burm
    • Research in Plant Disease
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The succinate dehydrogenase inhibitor (SDHI) is a class of fungicides, which is widely and rapidly used to manage fungal pathogens in the agriculture field. Currently, fungicide resistance to SDHIs has been developed in many different plant pathogenic fungi, causing diseases on crops, fruits, vegetables, and turf. Understanding the molecular mechanisms of fungicide resistance is important for effective prevention and resistance management strategies. Two different mechanisms have currently been known in SDHI resistance. The SDHI target genes, SdhB, SdhC, and SdhD, mutation(s) confer resistance to SDHIs. In addition, overexpression of ABC transporters is involved in reduced sensitivity to SDHI fungicides. In this review, the current status of SDHI resistance mechanisms in phytopathogenic fungi is discussed.

Genetic Diversity of Phomopsis citri with Random Amplified Polymorphic DNA (RAPD) and Fungicide Resistance (RAPD 및 약제저항성을 이용한 감귤 검은점무늬병균의 유전적 다양성 분석)

  • 고영진;서정규;이태선;송장훈;권혁모;문덕영;문두길;한해룡
    • Korean Journal Plant Pathology
    • /
    • v.14 no.2
    • /
    • pp.171-176
    • /
    • 1998
  • Gentic diversity of 42 isolates of Phomopsis citri was analyzed with random amplified polymorphic DNA(RAPD) and fungicide resistance. RAPD profiles of genomic DNA of the isolates of P. citri and the degrees of their resistance to the fungicides mancozeb and propineb suggested the occurrence of genetic differentiation of P. citri distributed in Cheju. The isolates showed genetically diverse RAPD profiles according to the host species collected even from the same collection site and also according to the geographic origin collected even from the same host species. High levels of resistance to fungicides mancozeb and propineb were observed among the isolates of P. citri. However, there was no correlation between RAPD profiles of genomic DNA and levels of fungicide resistance of the isolates, suggesting that fungicide resistance of P. citri occurred irrespective of the host and geographic origin.

  • PDF

Chemical Resistance of Diaporthe citri against Systemic Fungicides on Citrus

  • Zar Zar Soe;Yong Ho Shin;Hyun Su Kang;Yong Chull Jeun
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.351-360
    • /
    • 2023
  • Citrus melanose, caused by Diaporthe citri, has been one of the serious diseases, and chemical fungicides were used for protection in many citrus orchards of Jeju Island. Establishing a disinfectant resistance management system and reducing pesticide usage would be important for contributing to safe agricultural production. In this study, monitoring of chemical resistance was performed with 40 representative D. citri isolates from many citrus orchards in Jeju Island. Four different fungicides, kresoxim-methyl, benomyl, fluazinam, and prochloraz manganese, with seven different concentrations were tested in vitro by growing the mycelium of the fungal isolates on the artificial medium potato dextrose agar. Among the 40 fungal isolates, 12 isolates were investigated as resistant to kresoxim-methyl which could not inhibit the mycelium growth to more than 50%. Especially isolate NEL21-2 was also resistant against benomyl, whose hyphae grew well even on the highest chemical concentration. However, any chemical resistance of fungal isolates was found against neither fluazinam nor prochloraz manganese. On the other hand, in vivo bio-testing of some resistant isolates was performed against both kresoxim-methyl and benomyl on young citrus leaves. Typical melanose symptoms developed on the citrus leaves pre-treated with both agrochemicals after inoculation with the resistant isolates. However, no or less symptoms were observed when the susceptible isolates were inoculated. Based on these results, it was suggested that some resistant isolates of D. citri occurred against both systemic fungicides, which may be valuable to build a strategy for protecting citrus disease.

Recent Trends in Studies on Botanical Fungicides in Agriculture

  • Yoon, Mi-Young;Cha, Byeongjin;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Plants are attacked by various phytopathogenic fungi. For many years, synthetic fungicides have been used to control plant diseases. Although synthetic fungicides are highly effective, their repeated use has led to problems such as environmental pollution, development of resistance, and residual toxicity. This has prompted intensive research on the development of biopesticides, including botanical fungicides. To date, relatively few botanical fungicides have been registered and commercialized. However, many scientists have reported isolation and characterization of a variety of antifungal plant derivatives. Here, we present a survey of a wide range of reported plant-derived antifungal metabolites.

Sensitivity of the Pyrenophora teres Population in Algeria to Quinone outside Inhibitors, Succinate Dehydrogenase Inhibitors and Demethylation Inhibitors

  • Lammari, Hamama-Imene;Rehfus, Alexandra;Stammler, Gerd;Benslimane, Hamida
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.218-230
    • /
    • 2020
  • Net blotch of barley caused by Pyrenophora teres (Died.) Drechsler, is one of the most destructive diseases on barley in Algeria. It occurs in two forms: P. teres f. teres and P. teres f. maculata. A total of 212 isolates, obtained from 58 fields sampled in several barley growing areas, were assessed for fungicide sensitivity by target gene analysis. F129L and G137R mitochondrial cytochrome b substitution associated with quinone outside inhibitors (QoIs) resistance, and succinate dehydrogenase inhibitors (SDHIs) related mutations (B-H277, C-N75S, C-G79R, C-H134R, and C-S135R), were analyzed by pyrosequencing. In vitro sensitivity of 45 isolates, towards six fungicides belonging to three chemical groups (QoI, demethylase inhibitor, and SDHI) was tested by microtiter technique. Additionally, sensitivity towards three fungicides (azoxystrobin, fluxapyroxad, and epoxiconazole) was assessed in planta under glasshouse conditions. All tested isolates were QoI-sensitive and SDHI-sensitive, no mutation that confers resistance was identified. EC50 values showed that pyraclostrobin and azoxystrobin are the most efficient fungicides in vitro, whereas fluxapyroxad displayed the best disease inhibition in planta (81% inhibition at 1/9 of the full dose). The EC50 values recorded for each form of net blotch showed no significant difference in efficiency of QoI treatments and propiconazole on each form. However, in the case of fluxapyroxad, epoxiconazole and tebuconazole treatments, analysis showed significant differences in their efficiency. To our knowledge, this study is the first investigation related to mutations associated to QoI and SDHI fungicide resistance in Algerian P. teres population, as well as it is the first evaluation of the sensitivity of P. teres population towards these six fungicides.