• Title/Summary/Keyword: Fungicide application

Search Result 156, Processing Time 0.023 seconds

Effects of Pesticides on Soil Microflora - Changes in Soil Microflora by Application of Organochlorine Pesticides - (농약(農藥)이 토양미생물상(土壤微生物相)에 미치는 영향(影響) -유기염소계(有機鹽素系) 살균제(殺菌劑) 및 살충제살포(殺蟲劑撒布)에 따른 전토양미생물상(田土壤微生物相)의 변동(變動)-)

  • Yang, Chang-Sool
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.3
    • /
    • pp.299-306
    • /
    • 1984
  • The influences of applications of organochlorine insecticide (HCH: Hexachlorocyclohexane, 10 ppm), fungicide (TPN: Tetrachloroisophthalonitrile, 40 ppm) and manure ($3Kg/m^2$) each or together on changes in soil microflora for consecutive years were investigated in the experimental field plots. The insecticide had a little effect on soil microbial numbers. In particular, the number of total bacteria, Gram-negative bacteria and fungi were gradually increased at the latter stage of the consecutive application, but the number of sporeforming bacteria reduced. The fungicide reduced the counts of sporeforming bacteria, actinomycetes and fungi respectively, whereas increased prominently the counts of total bacteria and Gram-negative bacteria. TPN-resistant bacteria, particulary TPN-resistant Gram-negative bacteria were gradually accumulated by the long-term application of TPN, and further the number of TPN-resistant total bacteria and the of TPN-resistant Gram-negative bacteria correlated fairly well during all the period. The influences of combined applications of both HCH and TPN on the number of soil microorganisms were equal to the respective sums of the effects of single application of each pesticide. The combined application of manure and these pesticides elevated the increasing extents of microbial numbers, while weakened the detrimental efforts of these pesticides on microbial numbers. These data suggest that the long-term application of these materials have resulted in the remarkable changes of composition of soil microflora.

  • PDF

Control Efficacy of Mixing Application of Microbial and Chemical fungicide against Phytophthora blight of red-pepper (미생물농약과 유기합성 살균제 혼용에 따른 고추 역병 방제 효과)

  • Hong, Sung-Jun;Kim, Jung-Hyun;Kim, Yong-Ki;Jee, Hyeong-Jin;Shim, Chang-Ki;Kim, Min-Jeong;Park, Jong-Ho;Han, Eun-Jung;Goo, Hyung-Jin;Choi, Kwang-Young;Yun, Jong-Chul
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.460-467
    • /
    • 2013
  • This study was conducted to reduce the using amount of chemical fungicides for the control of red-pepper Phytophthora blight. Effect of combination application of two microbial fungicides and two chemical fungicides for the control of red-pepper Phytophthora blight was examined in vitro, in greenhouse and under field conditions. Each microbial fungicides and chemical fungicides was two-fold diluted and mixed-soil drenched. In the greenhouse pot assay, the mixed application of B. pumilus QST2808 and a mixture of dimethomorph + ethaboxam (De) among four mixed applications of two microbial fungicides (B. pumilus QST2808, P. polymyxa AC-1) and two chemical fungicides showed the highest control effect against Phytophthora blight. Also, control effect of mixed application of B. pumilus QST2808 and De was similar to that of single application of De (dimethomorph + ethaboxam) or Mo (mancozeb + oxadixyl). In the field test, when the microbial fungicides (B. pumilus QST2808, P. polymyxa AC-1) and the chemical fungicide(De) for the control of Phytophthora blight of red pepper were mixed-soil drenched four times at 7~10 day-intervals, the control values were in the range of 78.8% to 82.0%. On the other hand when each of the two chemical fungicides (De, Mo) were soil drenched four times at 7~10 day-intervals, the control value were 65.7% to 85.8%. Consequently, the mixed application of the microbial fungicides and chemical fungicides could be recommended as a control method for reducing the using amount of chemical fungicides.

Seedborne Fungi and Fungicide Seed Treatment of Ginseng

  • A.Monique Ziezold;Richard D.Reeleder;Robert Hall;John T.A.Proctor
    • Journal of Ginseng Research
    • /
    • v.22 no.4
    • /
    • pp.229-236
    • /
    • 1998
  • The incidence of fungi and their possible contribution to low vigour were examined in a collection of ginseng (Panax quiquefolius) seed from Ontario. When examined after one winter of stratification in the field and storage at 4f for five months in the laboratory, the collection exhibited low vigour (plant stand 16.7% of seeding rate six weeks after seeding) and high incidence (94%) of discolored or soft seed. Fungi isolated (and incidence) from 1,304 endosperm halves recovered from surface-sterilized seed were, in order of abundance, Fusarium rostrum (22.2%), Chaetomium crispuum (14.3%), Funriud oxysporum (9.0%), Fusarium sdani (9.0%), iwmor sp. (8.4%), Alternaria sp. (8.1%), Zowieua lucotricha (7.8%), Cylindruarpn sp. (0.9%), Fusarium avenacmm (0.9%), and Vdudla iliata (0.4%). Most of these fungi, including known and potential pathogens of ginseng (species of Alerraria, Cylindrocarpon, Fusarium, and Trichodirma), were associated with both healthy and diseased seed. Application of Benlate (benomyl), Thiram (thiram), or UBI-2584 (tebuconazole) to seed caused slight to pronounced reduction in emergence and did not significantly affect plant stand six weeks after seeding. The study demonstrated the high level of infection by fungi, including known and potential pathogens of the cry, in an arbitrary collection of ginseng seed from commercial sources, and the phytotoxicity of the fungicides tested when applied to moist stratified seed. The lack of efficacy of the fungicides precluded determination of the contribution of seedborne fungi to low vigour of the seed.

  • PDF

The Effects of Biological Control using the Composted Liquid Manure on Large Patch in Zoysiagrass (Zoysia japonica)

  • Ryu, Ju Hyun;Shim, Gyu Yul;Lee, Sang-Kook;Kim, Ki Sun
    • Weed & Turfgrass Science
    • /
    • v.3 no.4
    • /
    • pp.354-361
    • /
    • 2014
  • This study was conducted to investigate whether several composted liquid manures (CLMs) are useful for biological control of large patch on zoysiagrass and investigate the chemical and biological factors to suppress large patch in soil treated with CLMs. The CLMs were produced at 4 different facilities for livestock excretion treatments located in Korea. Field experiments were carried out at 5 golf courses located near each facility. CLM and Chemical fertilizer (CF: water soluble fertilizer, 20-20-20) were applied four and three times with N at $12g\;m^{-2}$ per year, respectively. There was significant increase of concentration of K, Na, and Cu of soil treated with CLM compared to CF treatment. Among experimental plots, CN and GG2 plot sites were shown significant higher effect of biological control 80% and 50% respectively against large patch disease. The number of bacteria, Actinomycetes, and fungi in soil at these sites significantly increased and fluorescein diacetate hydrolytic activity was enhanced, while the soil was treated with CLM. The results of this study demonstrated that CLM application has effect on soil to suppress large patch and reduce the use of fungicide in environment-friendly turf management.

Control of Potato Late blight (Phytophthora infestans) with Postassium Phosphonate (아인산염의 감자 역병 방제효과)

  • Hong, Soon-Yeong;Lee, Kwang-Seok;Kang, Yong-Kil;Jee, Hyeong-Jin
    • Research in Plant Disease
    • /
    • v.9 no.3
    • /
    • pp.179-182
    • /
    • 2003
  • Effect of potassium phosphonate on control of potato late blight was evaluated at two fields in Jeju island. The chemical showed 82.5% control value in field located at low seacoast with 100 m elevation, while dimethomorph copper oxychloride showed 75.9 % control value. However, its control value was only 40% in another field located at mid-hilly area with 300 m elevation, in which environmental conditions of high hummudity and often rainfall were favorable to the disease development. Application intervals of the phosphonate from 7 to 15 effectively suppressed the disease and did not show statistically different control values among the spraying intervals. Results indicated that phosphonate similarly or more effectively controls potato late blight than fungicide, however, its control value could be vared according to enviromental conditions for the disease development and 15-d spraying intervals ware sufficient to suppress ther disease.

Application of the Microbial Process for Hydrogen Sulfide Removal and Bio-Sulfur Production from Landfill Gas (미생물 공법에 의한 매립가스 황화수소 제거 및 바이오황 생산)

  • Khim, Young-Min;Song, Hyo-Soon;Ahn, Hyoseong;Chun, Seung-Kyu
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.68-76
    • /
    • 2020
  • Operational testing of the THIOPAQ® facility that removes H2S from landfill gas was performed for 746 days. The average H2S removal efficiency was 99.4%, and the input quantities of air, NaOH, and nutrients per sulfur load were 13.1 ㎥/ton, 1.5 ㎥/ton, and 28.7 L/ton, respectively. The purity of the bio-sulfur produced from the facility was 94.8%, with 3.3% impurities, except for moisture. X-ray photoelectron spectroscopy showed that the compositional contents of amino acids and free amino acids of the bio-sulfur surface were 5,308 and 728 mg/kg, respectively. The mean particle size was 3.41 ㎛, which was much smaller than that of chemical sulfur. Based on these results, a high H2S removal rate of more than 97% is feasible, and high value-added bio-sulfur, which is used as a fungicide because of its hydrophilic characteristics and small size, can be obtained at this facility.

Biological Control of Strawberry Fusarium Wilt Caused by Fusarium oxysporum f. sp.fragariae Using Bacillus velezensis BS87 and RK1 Formulation

  • Nam, Myeong-Hyeon;Park, Myung-Soo;Kim, Hong-Gi;Yoo, Sung-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.520-524
    • /
    • 2009
  • Two isolates, Bacillus sp. BS87 and RK1, selected from soil in strawberry fields in Korea, showed high levels of antagonism towards Fusarium oxysporum f. sp. fragariae in vitro. The isolates were identified as B. velezensis based on the homology of their gyrA sequences to reference strains. BS87 and RK1 were evaluated for control of Fusarium wilt in strawberries in pot trials and field trials conducted in Nonsan, Korea. In the pot trials, the optimum applied concentration of BS87 and RK1 for pre-plant root-dip application to control Fusarium wilt was $10^5$ and $10^6$ colony-forming units (CFU)/ml, respectively. Meanwhile, in the 2003 and 2005 field trials, the biological control efficacies of formulations of RK1 were similar to that of a conventional fungicide (copper hydroxide) when compared with a non-treated control. The RK1 formulation was also more effective than BS87 in suppressing Fusarium wilt under field conditions. Therefore, the results indicated that formulations of B. velezensis BS87 and RK1 may have potential to control Fusarium wilt in strawberries.

Biocontrol Traits and Antagonistic Potential of Bacillus amyloliquefaciens Strain NJZJSB3 Against Sclerotinia sclerotiorum, a Causal Agent of Canola Stem Rot

  • Wu, Yuncheng;Yuan, Jun;Raza, Waseem;Shen, Qirong;Huang, Qiwei
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1327-1336
    • /
    • 2014
  • Bacillus amyloliquefaciens strain NJZJSB3 has shown antagonism of several phytopathogens in vitro, especially Sclerotinia sclerotiorum. Both the broth culture and cell suspension of strain NJZJSB3 could completely protect the detached leaves of canola (Brassica napus) from S. sclerotiorum infection. In pot experiments, the application of strain NJZJSB3 cell suspension ($10^8CFU/ml$) decreased the disease incidence by 83.3%, a result similar to commercially available fungicide (Dimetachlone). In order to investigate the potential biocontrol mechanisms of strain NJZJSB3, the nonvolatile antifungal compounds it produces were identified as iturin homologs using HPLC-ESI-MS. Antifungal volatile organic compounds were identified by gas chromatography-mass spectrometry. The detected volatiles toluene, phenol, and benzothiazole showed antifungal effects against S. sclerotiorum in chemical control experiments. Strain NJZJSB3 also produced biofilm, siderophores and cell-wall-degrading enzymes (protease and ${\beta}$-1,3-glucanase). These results suggest that strain NJZJSB3 can be a tremendous potential agent for the biological control of sclerotinia stem rot.

Suppression of Bipolaris Stem Rot on Cactus by Heat-inactivated Conidial Suspension of Bipolaris cactivora

  • Choi, Min-Ok;Kim, Sang-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.231-237
    • /
    • 2010
  • The heat-inactivated (at $121^{\circ}C$ for 20 min) conidial suspension of Bipolaris cactivora (HICS) was evaluated for the control of Bipolaris stem rot of cactus caused by B. cactivora. Severe rot symptoms were developed on the cactus stem discs inoculated with B. cactivora from 5 days after inoculation. However, only small brownish spots developed on the stem discs treated with HICS 2 days prior to the pathogen inoculation. HICS also reduced symptom development on cactus stem discs inoculated with other fungal pathogens such as Alternaria alternata, Colletotrichum gloeosporioides, and Fusarium oxysporum, suggesting its disease-inhibitory efficacy may not be pathogen-specific. HICS significantly reduced severities of the stem rot disease on several cactus species including Hylocereus trigonus, Cereus peruvianus, Chamaecereus silvestrii and Gymnocalycium mianovichii, but not on Cereus tetragonus. Extensive wound periderms were formed in the stem tissues of inoculation and/or wounding sites on C. peruvianus treated with HICS alone or prior to the pathogen inoculation, but not on C. tetragonus, indicating the structural modifications may be related to the mechanism of disease suppression by HICS. HICS also reduced the disease development on the grafted cactus (H. trigonus stock and G. mianovichii scion) with the control efficacy nearly equivalent to the application of a commercial fungicide. All of these results suggest HICS can be used as an environmental-friendly agent for the control of the cactus stem disease.

Evaluation of fungicides to control of potato late blight in Korea

  • K. Y. Ryu;Kim, J. T.;Kim, J. S.;J. U. Cheon;X. Z. Zhang;Kim, B. S.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.89.2-90
    • /
    • 2003
  • Potato late blight, caused by Phytophthora infestans, is one of the important diseases in potato cultivation areas. Though the incidence of late blight was depend on the inoculums and climatic condition In each fields, the foliar blight was reached to 100% under the severe disease pressure condition in 2003. Outbreak of foliar blight was concentrated from May and July and evaluation of ten fungicides to control of late blight was made at Daekwallryoung area in potato fields. Based on the company recommendation, those fungicides were applied by a sprayer at the recommended rates on a weekly application schedule. Effect of ten fungicides on foliar blight was based on area under disease progress curve (AUDPC). Across all fungicides was reduced by 77% in AUDPC and dimethomorph was reduced by 92% in AUDPC during the same period, respectively. Those fungicide were inhibited the mycelial growth of isolate with different rate in chemical amended medium and several fungicides were completely limited the growth of isolate.

  • PDF