• Title/Summary/Keyword: Fungal structure

Search Result 156, Processing Time 0.022 seconds

Characterization of odor-associated fungal community in automobile HVAC systems using a high-throughput DNA sequencing method (고속 염기서열 분석법을 이용한 자동차 공조 시스템(HAVC systems)의 악취 연관 곰팡이 군집 특성)

  • Lee, Yun-Yeong;Choi, Hyungjoo;Yun, Jeonghee;Ryu, Hee Wook;Cho, Jong Rae;Seong, Kwangmo;Cho, Kyung-Suk
    • Journal of odor and indoor environment
    • /
    • v.16 no.1
    • /
    • pp.54-63
    • /
    • 2017
  • The Automobile HVAC system is a habitat for odor-associated fungal communities. We investigated the odor-associated fungal community in an automobile HVAC system using a high-throughput DNA sequencing method. The fungal community structure was evaluated via metagenome analysis. At the phylum level, Ascomycota and Basidiomycota were detected, accounting for 43.41% and 56.49% of the fungal community in the HVAC system, respectively. Columnosphaeria (8.31%), Didymella (5.60%), Davidiella (5.50%), Microxyphium (4.24%), unclassified Pleosporales (2.90%), and Cladosporium (2.79%) were abundant at phylum of Ascomycota and Christiansenia (36.72%), Rhodotorula (10.48%), and Sporidiobolus (2.34%) were abundant at phylum of Basidiomycota. A total of 22 genera of fungi were isolated and identified from the evaporators of the HVAC systems which support fungal growth and biofilm formation. Among them, Cladosporium, Penicillium, Aspergillus, and Alternaria are the most representative odor-associated fungi in HVAC systems. They were reported to form biofilm on the surface of HVAC systems with other bacteria by hypha. In addition, they produce various mVOCs such as 3-methyl-1-butanol, acetic acid, butanoic acid, and methyl isobutyl ketone. Our findings may be useful for extending the understanding of odor-associated fungal communities in automobile HVAC systems.

Distribution, Characterization, and Diversity of the Endophytic Fungal Communities on Korean Seacoasts Showing Contrasting Geographic Conditions

  • You, Young-Hyun;Park, Jong Myong;Seo, Yeong Gyo;Lee, Woong;Kang, Myung-Suk;Kim, Jong-Guk
    • Mycobiology
    • /
    • v.45 no.3
    • /
    • pp.150-159
    • /
    • 2017
  • This study analyzed the distribution of endophytic fungi in 3 coastal environments with different climatic, geographical, and geological characteristics: the volcanic islands of Dokdo, the East Sea, and the West Sea of Korea. The isolated fungal endophytes were characterized and analyzed with respect to the characteristics of their host environments. For this purpose, we selected common native coastal halophyte communities from three regions. Molecular identification of the fungal endophytes showed clear differences among the sampling sites and halophyte host species. Isolates were also characterized by growth at specific salinities or pH gradients, with reference to previous geographical, geological, and climate studies. Unlike the East Sea or West Sea isolates, some Dokdo Islands isolates showed endurable traits with growth in high salinity, and many showed growth under extremely alkaline conditions. A smaller proportion of West Sea coast isolates tolerate compared to the East Sea or Dokdo Islands isolates. These results suggest that these unique fungal biota developed through a close interaction between the host halophyte and their environment, even within the same halophyte species. Therefore, this study proposes the application of specific fungal resources for restoring sand dunes and salt-damaged agricultural lands and industrialization of halophytic plants.

Differences among Endophytic Fungal Communities Isolated from the Roots of Cephalanthera longibracteata Collected from Different Sites in Korea

  • Lee, Bong-Hyung;Kwon, Woo-Jin;Kim, Jin-Young;Park, Jin-Seo;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.312-317
    • /
    • 2017
  • Orchidaceous plants have symbiotic relationships with endophytic fungi, including mycorrhizal fungi, which play important roles in the seed germination and growth of the host plants. In this study, endophytic fungal communities isolated from the roots of Cephalanthera longibracteata collected from three different sites in Korea were analyzed, and it was determined whether fungal communities were preferentially correlated with the sites. The fungal isolates were identified by sequence analysis of the internal transcribed spacer regions of rDNA. In total, 30 species of endophytic fungi, including two species of mycorrhizal fungi belonging to the genus Tulasnella, were identified. Leptodontidium orchidicola showed the highest frequency and was isolated from all root samples. Species diversity and richness were not significantly different among sites. However, the community structure of the endophytic fungi significantly differed among sites, suggesting that the site characteristics affected the community composition of the endophytic fungi colonizing the roots of C. longibracteata. Our findings will aid in developing methods involving the use of symbiotic fungi for orchid conservation and restoration in native habitats.

Investigation of Ectomycorrhizal Fungal Colonization in Pinus thunbergii Seedlings at a Plantation Area in Gangneung, using Morphotyping and Sequencing the rDNA Internal Transcribed Spacer Region

  • Obase, Keisuke;Cha, Joo-Young;Lee, Jong-Kyu;Lee, Sang-Yong;Lee, Jin-Ho;Chun, Kun-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.2
    • /
    • pp.172-178
    • /
    • 2010
  • The status of ectomycorrhizal (ECM) fungal colonization in Pinus thunbergii seedlings was investigated 2 years after planting in an eastern coastal area of Korea. We established three $10{\times}10$ m plots at a P. thunbergii plantation in Gangneung and sampled lateral roots from 10 seedlings in each plot. ECMs were classified into morphological groups and the number of root tips of each morphotype was counted. In total, 8 ECM morphotypes were observed and fungal species that form each morphotype were identified by sequencing of the internal transcribed spacer (ITS) region of the nuclear rDNA. Suillus granulatus was the most abundant species (44.1-65.7% of relative abundance) in all plots, followed by Tomentella ellisii (14.0-37.8%) and unidentified fungus belonged to Atheliaceae (10.6-20.1%). These 3 fungal species accounted for almost all of the ECM abundance in each plot (94.9-99.8%). The remaining 5 fungal species were uncommon and rare. There was no clear difference in ECM fungal communities among plots. Community structure of ECM fungi in the young P. thunbergii plantation was simple and composed of fungal species that were also observed in mature coastal pine forests.

Species Diversity of Arbuscular Mycorrhizal Fungi Community Depending on Environmental Conditions of Forest Soils (산림(山林)의 토양환경(土壤環境) 조건(條件)에 따른 수지상(樹枝狀) 균근(菌根)(AM)균(菌) 집단(集團)의 종(種) 다양성(多樣性))

  • Koo, Chang-Duck
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.1
    • /
    • pp.70-79
    • /
    • 2000
  • Arbuscular mycorrhizal(AM) fungi have significant role for ecosystem structure and function. They are the major component of forest soil ecosystems and critically important for water and nutrient cycling in the system. To understand the ecology of AM fungi the fungal spores were collected, identified and counted in forest soils under various climatic and edaphic conditions. In relation to soil depth 90% of AM fungi spores and mycorrhizas distributed within 15cm soil depth. Number of spores per $100m{\ell}$ forest soil volume was 5 to 36 spores from 1 to 3 fungal species. AM fungal species diversity was higher in warmer climates, and more moist and fertile soils. The most frequently found species were Gigaspora decipiens irrespective of soil moisture and Gi. gigantea irrespective of soil fertility. In the Jeju island the soils of Cryptomeria japonica plantations and Miscanthus sinensis var. purpurascens meadow had more AM spores than the other soils. We suggest AM fungi be considered as keystones species when restoring a disturbed forest ecosystem.

  • PDF

Systematic Analysis of the Anticancer Agent Taxol-Producing Capacity in Colletotrichum Species and Use of the Species for Taxol Production

  • Choi, Jinhee;Park, Jae Gyu;Ali, Md. Sarafat;Choi, Seong-Jin;Baek, Kwang-Hyun
    • Mycobiology
    • /
    • v.44 no.2
    • /
    • pp.105-111
    • /
    • 2016
  • Paclitaxel (taxol) has long been used as a potent anticancer agent for the treatment of many cancers. Ever since the fungal species Taxomyces andreanae was first shown to produce taxol in 1993, many endophytic fungal species have been recognized as taxol accumulators. In this study, we analyzed the taxol-producing capacity of different Colletotrichum spp. to determine the distribution of a taxol biosynthetic gene within this genus. Distribution of the taxadiene synthase (TS) gene, which cyclizes geranylgeranyl diphosphate to produce taxadiene, was analyzed in 12 Colletotrichum spp., of which 8 were found to contain the unique skeletal core structure of paclitaxel. However, distribution of the gene was not limited to closely related species. The production of taxol by Colletotrichum dematium, which causes pepper anthracnose, depended on the method in which the fungus was stored, with the highest production being in samples stored under mineral oil. Based on its distribution among Colletotrichum spp., the TS gene was either integrated into or deleted from the bacterial genome in a species-specific manner. In addition to their taxol-producing capacity, the simple genome structure and easy gene manipulation of these endophytic fungal species make them valuable resources for identifying genes in the taxol biosynthetic pathway.

Morphological Characteristics of Pseudosclerotia of Grifola umbellata in In Vitro

  • Choi, Kyung-Dal;Lee, Kyung-Tae;Hur, Hyun;Hong, In-Pyo;Shim, Jae-Ouk;Lee, Youn-Su;Lee, Tae-Soo;Lee, Sang-Sun;Lee, Min-Woong
    • Mycobiology
    • /
    • v.32 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • The present study was carried out to investigate morphological characteristics of pseudosclerotia of Grifola umbellata formed by artificial cultures. Isolate G. umbellata DUM GUS-01 was obtained from sclerotium cultivated in field. The fungal isolate was cultured on PDYM broth, PDYMA(potato dextrose yeast malt agar) and oak sawdust media at $20^{\circ}C$ under the dark condition. G. umbellata DUM GUS-01 showed a volumetric increment of fungal lumps rather than mycelial growth. Particularly, G. umbellata DUM GUS-01 produced a large amount of melanin pigments in all culture treatments. The color of the fungal mass has been changed into grey gradually, and then formed melanized rind-like structure on its superficial part. The fungal structures which were covered with melanized rind-like layer were named as pseudosclerotia of G. umbellata. The pseudosclerotia of G. umbellata DUM GUS-01 formed a new white mycelial mass, which was swollen out of the melanized rind structure for its volumetric increment. When the pseudosclerotia were sectioned, their structure was discriminated from two structures such as a melanized rind-like structure layer formed by aggregation of aged mycelia and a white mycelial mass with high density. As results of scanning electron microscopic examination, the pseudosclerotia of G. umbellata DUM GUS-01 which were formed in in vitro conditions were similar to the sclerotia of G. umbellata cultivated in natural conditions except for the crystals formed in medula layer of natural sclerotia. Although size, solidity of rind structure and mycelial compactness of pseudosclerotia were more poor than those of natural sclerotia, the morphological structure and growth pattern of pseudosclerotia were very similar to those of natural sclerotia. Therefore, it is probable to induce pseudosclerotia to sclerotia of G. umbellata in in vitro conditions. Consequently, it seems that the induced pseudosclerotia can be used as inoculum sources to substitute natural sclerotia in field cultivation.

Changes in Endophyte Communities across the Different Plant Compartments in Response to the Rice Blast Infection

  • Mehwish Roy;Sravanthi Goud Burragoni;Junhyun Jeon
    • The Plant Pathology Journal
    • /
    • v.40 no.3
    • /
    • pp.299-309
    • /
    • 2024
  • The rice blast disease, caused by the fungal pathogen, Magnaporthe oryzae (syn. Pyricularia oryzae), poses a significant threat to the global rice production. Understanding how this disease impacts the plant's microbial communities is crucial for gaining insights into host-pathogen interactions. In this study, we investigated the changes in communities of bacterial and fungal endophytes inhabiting different compartments in healthy and diseased plants. We found that both alpha and beta diversities of endophytic communities do not change significantly by the pathogen infection. Rather, the type of plant compartment appeared to be the main driver of endophytic community structures. Although the overall structure seemed to be consistent between healthy and diseased plants, our analysis of differentially abundant taxa revealed the specific bacterial and fungal operational taxonomic units that exhibited enrichment in the root and leaf compartments of infected plants. These findings suggest that endophyte communities are robust to the changes at the early stage of pathogen infection, and that some of endophytes enriched in infected plants might have roles in the defense against the pathogen.

Effects of simulated acid rain on microbial activities and litter decomposition

  • Lim, Sung-Min;Cha, Sang-Seob;Shim, Jae-Kuk
    • Journal of Ecology and Environment
    • /
    • v.34 no.4
    • /
    • pp.401-410
    • /
    • 2011
  • We assayed the effects of simulated acid rain on the mass loss, $CO_2$ evolution, dehydrogenase activity, and microbial biomass-C of decomposing Sorbus alnifolia leaf litter at the microcosm. The dilute sulfuric acid solution composed the simulated acid rain, and the microcosm decomposition experiment was performed at 23$^{\circ}C$ and 40% humidity. During the early decomposition stage, decomposition rate of S. alnifolia leaf litter, and microbial biomass, $CO_2$ evolution and dehydrogenase activity were inhibited at a lower pH; however, during the late decomposition stage, these characteristics were not affected by pH level. The fungal component of the microbial community was conspicuous at lower pH levels and at the late decomposition stage. Conversely, the bacterial community was most evident during the initial decomposition phase and was especially dominant at higher pH levels. These changes in microbial community structure resulting from changes in microcosm acidity suggest that pH is an important aspect in the maintenance of the decomposition process. Litter decomposition exhibited a positive, linear relationship with both microbial respiration and microbial biomass. Fungal biomass exhibited a significant, positive relationship with $CO_2$ evolution from the decaying litter. Acid rain had a significant effect on microbial biomass and microbial community structure according to acid tolerance of each microbial species. Fungal biomass and decomposition activities were not only more important at a low pH than at a high pH but also fungal activity, such as $CO_2$ evolution, was closely related with litter decomposition rate.

Bacterial and Fungal Communities in Bulk Soil and Rhizospheres of Aluminum-Tolerant and Aluminum-Sensitive Maize (Zea mays L.) Lines Cultivated in Unlimed and Limed Cerrado Soil

  • Mota, Da;Faria, Fabio;Gomes, Eliane Aparecida;Marriel, Ivanildo Evodio;Paiva, Edilson;Seldin, Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.805-814
    • /
    • 2008
  • Liming of acidic soils can prevent aluminum toxicity and improve crop production. Some maize lines show aluminum (Al) tolerance, and exudation of organic acids by roots has been considered to represent an important mechanism involved in the tolerance. However, there is no information about the impact of liming on the structures of bacterial and fungal communities in Cerrado soil, nor if there are differences between the microbial communities from the rhizospheres of Al-tolerant and Al-sensitive maize lines. This study evaluated the effects of liming on the structure of bacterial and fungal communities in bulk soil and rhizospheres of Al-sensitive and Al-tolerant maize (Zea mays L.) lines cultivated in Cerrado soil by PCR-DGGE, 30 and 90 days after sowing. Bacterial fingerprints revealed that the bacterial communities from rhizospheres were more affected by aluminum stress in soil than by the maize line (Al-sensitive or Al-tolerant). Differences in bacterial communities were also observed over time (30 and 90 days after sowing), and these occurred mainly in the Actinobacteria. Conversely, fungal communities from the rhizosphere were weakly affected either by liming or by the rhizosphere, as observed from the DGGE profiles. Furthermore, only a few differences were observed in the DGGE profiles of the fungal populations during plant development when compared with bacterial communities. Cloning and sequencing of 16S rRNA gene fragments obtained from dominant DGGE bands detected in the bacterial profiles of the Cerrado bulk soil revealed that Actinomycetales and Rhizobiales were among the dominant ribotypes.