• Title/Summary/Keyword: Fungal growth

Search Result 853, Processing Time 0.028 seconds

Antifungal Activity of Thymol against Aspergillus awamori and Botrytis aclada Isolated from Stored Onion Bulbs

  • Ji Yeon Oh;Siti Sajidah;Elena Volynchikova;Yu Jin Kim;Gyung Deok Han;Mee Kyung Sang;Ki Deok Kim
    • Mycobiology
    • /
    • v.50 no.6
    • /
    • pp.475-486
    • /
    • 2022
  • The antifungal activity of thymol against Aspergillus awamori F23 and Botrytis aclada F15 in onions was examined through direct treatment with amended media and gaseous treatment with I-plates (plastic plates containing central partitions). The protective and curative control efficacy of thymol was examined 24 h before and after the inoculation of onion bulbs with the fungal isolates. Mycelial growth, sporulation, and spore germination of the isolates were inhibited on potato dextrose agar amended with various concentrations of thymol or acetic acid (positive control). Overall, thymol produced a stronger inhibitory effect on the mycelial growth and development of the isolates than acetic acid. Following gaseous treatment in I-plates, mycelial growth, sporulation, and spore germination of the isolates were inhibited at higher concentrations of thymol or acetic acid; however, acetic acid showed a little effect on the sporulation and spore germination of the isolates. Following the treatment of onion bulbs with 1000 mg L-1 of thymol 24 h before and after fungal inoculation, lesion diameter was greatly reduced compared with that following treatment with 0.5% ethanol (solvent control). Onion bulbs sprayed with thymol 24 h before fungal inoculation generally showed reduced lesion diameters by isolate F23 but not in isolate F15 compared with those sprayed 24 h after fungal inoculation. Collectively, thymol effectively inhibited the growth and development of A. awamori and B. aclada on amended media and in I-plates. In addition, spraying or fumigation of thymol is more desirable for effectively controlling these postharvest fungal pathogens during long-term storage conditions.

Fungal Endophytes from Three Cultivars of Panax ginseng Meyer Cultivated in Korea

  • Park, Sang-Un;Lim, Hyoun-Sub;Park, Kee-Choon;Park, Young-Hwan;Bae, Han-Hong
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.107-113
    • /
    • 2012
  • In order to investigate the diversity of endophytes, fungal endophytes in Panax ginseng Meyer cultivated in Korea were isolated and identified using internal transcribed spacer (ITS) sequences of ribosomal DNA. Three cultivars of 3-year-old ginseng roots (Chunpoong, Yunpoong, and Gumpoong) were used to isolate fungal endophytes. Surface sterilized ginseng roots were placed on potato dextrose agar plates supplemented with ampicilin and streptomycin to inhibit bacterial growth. Overall, 38 fungal endophytes were isolated from 12 ginseng roots. According to the sequence analysis of the ITS1-5.8S-ITS2, 38 fungal isolates were classified into 4 different fungal species, which were Phoma radicina, Fusarium oxysporum, Setophoma terrestris and Ascomycota sp. 2-RNK. The most dominant fungal endophyte was P. radicina in 3 cultivars. The percentage of dominant endophytes of P. radicina was 65.8%. The percentage of colonization frequency of P. radicina was 80%, 52.9%, and 75% in Chunpoong, Yunpoong, and Gumpoong, respectively. The second most dominant fungal endophyte was F. oxysporum. The diversity of the fungal endophytes was low and no ginseng cultivar specificity among endophytes was detected in this study. The identified endophytes can be potential fungi for the production of bioactive compounds and control against ginseng pathogens.

Fungal Load of Groundwater Systems in Geographically Segregated Islands: A Step Forward in Fungal Control

  • Joong Hee Cho;Nam Soo Jun;Jong Myong Park;Ki In Bang;Ji Won Hong
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.345-356
    • /
    • 2022
  • The fungal distribution, diversity, and load were analyzed in the geographically segregated island groundwater systems in Korea. A total of 79 fungal isolates were secured from seven islands and identified based on the internal transcribed spacer (ITS) sequences. They belonged to three phyla (Ascomycota, Basidiomycota, and Chlorophyta), five classes, sixteen orders, twenty-two families, and thirty-one genera. The dominant phylum was Ascomycota (91.1%), with most fungi belonging to the Cladosporium (21.5%), Aspergillus (15.2%), and Stachybotrys (8.9%) genera. Cladosporium showed higher dominance and diversity, being widely distributed throughout the geographically segregated groundwater systems. Based on the diversity indices, the genera richness (4.821) and diversity (2.550) were the highest in the groundwater system of the largest scale. As turbidity (0.064-0.462) increased, the overall fungal count increased and the residual chlorine (0.089-0.308) had low relevance compared with the total count and fungal diversity. Cladosporium showed normal mycelial growth in de-chlorinated sterilized samples. Overall, if turbidity increases under higher fungal diversity, bio-deterioration in groundwater-supplying facilities and public health problems could be intensified, regardless of chlorine treatment. In addition to fungal indicators and analyzing methods, physical hydrostatic treatment is necessary for monitoring and controlling fungal contamination.

Identification and Characterization of Diplodia parva and Diplodia crataegicola Causing Black Rot of Chinese Quince

  • Sungmun Kwon;Jungyeon Kim;Younmi Lee;Kotnala Balaraju;Yongho Jeon
    • The Plant Pathology Journal
    • /
    • v.39 no.3
    • /
    • pp.275-289
    • /
    • 2023
  • Fungal isolates from infected Chinese quince trees were found to cause black rot in Yeongcheon, Gyeongsangbuk Province, Korea. The quince leaves withered and turned reddish-brown and fruits underwent black mummification. To elucidate the cause of these symptoms, the pathogen was isolated from infected leaf and fruit tissues on potato dextrose agar and Levan media. Several fungal colonies forming a fluffy white or dark gray mycelium and two types of fungi forming an aerial white mycelium, growing widely at the edges, were isolated. Microscopic observations, investigation of fungal growth characteristics on various media, and molecular identification using an internal transcribed spacer, β-tubulin, and translation elongation factor 1-α genes were performed. The fungal pathogens were identified as Diplodia parva and Diplodia crataegicola. Pathogenicity tests revealed that the pathogen-inoculated fruits exhibited a layered pattern, turning brown rotting; leaves showed circular brown necrotic lesions. The developed symptoms were similar to those observed in the field. Fungal pathogens were reisolated to fulfill Koch's postulates. Apples were inoculated with fungal pathogens to investigate the host range. Strong pathogenicity was evident in the fruits, with browning and rotting symptoms 3 days after inoculation. To determine pathogen control, a fungicidal sensitivity test was conducted using four registered fungicides. Thiophanate-methyl, propineb, and tebuconazole inhibited the mycelial growth of pathogens. To the best of our knowledge, this is the first report on the isolation and identification of the fungal pathogens D. parva and D. crataegicola from infected fruits and leaves of Chinese quince, causing black rot disease in Korea.

Aspergillus clavatus Y2H0002 as a New Endophytic Fungal Strain Producing Gibberellins Isolated from Nymphoides peltata in Fresh Water

  • You, Young-Hyun;Kwak, Tae Won;Kang, Sang-Mo;Lee, Myung-Chul;Kim, Jong-Guk
    • Mycobiology
    • /
    • v.43 no.1
    • /
    • pp.87-91
    • /
    • 2015
  • Eighteen endophytic fungi with different colony morphologies were isolated from the roots of Nymphoides peltata growing in the Dalsung wetland. The fungal culture filtrates of the endophytic fungi were treated to Waito-c rice seedling to evaluate their plant growth-promoting activities. Culture filtrate of Y2H0002 fungal strain promoted the growth of the Waito-c rice seedlings. This strain was identified on the basis of sequences of the partial internal transcribed spacer region and the partial beta-tubulin gene. Upon chromatographic analysis of the culture filtrate of Y2H0002 strain, the gibberellins (GAs: $GA_1$, $GA_3$, and $GA_4$) were detected and quantified. Molecular and morphological studies identified the Y2H0002 strain as belonging to Aspergillus clavatus. These results indicated that A. clavatus improves the growth of plants and produces various GAs, and may participate in the growth of plants under diverse environmental conditions.

Inhibitory Effect of Garlic on the Growth of Aspergillus parasiticus (한국산 마늘에 의한 Aspergillus parasiticus의 성장 억제 효과)

  • Park, Jeong-Yeong;Kim, Jong-Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.2
    • /
    • pp.95-99
    • /
    • 2009
  • This study was performed to investigate the possible effect of garlic produced in Korea on the inhibition/reduction of growth of A. parasiticus, a toxigenic strain. The effect was studied using different concentrations of freeze-dried garlic in potato-dextrose agar (PDA) and/or in yeast-extract sucrose (YES) broth at $25^{\circ}C$ for 15 days. While inhibition of the fungal growth due to increasing the concentration of garlic was observed, the more remarkable effect was observed on the ninth day. Reduction of fungal diameter as a result of addition of garlic on PDA was observed to range between 3.4% to 20.1 % while reduction of mycelial weight in YES broth ranged from 9.9% to 30.5%. The 0.5% and 1.0% concentrations of garlic significantly reduced fungal diameter in PDA on the 9th day, while 0.1 %, 0.5%, and 1.0% concentrations of garlic significantly reduced the mycelial weight in YES broth (p<0.05). Dose-response relationships were observed between the concentration of garlic and inhibition of growth both in solid culture and in liquid culture. This study indicates that garlic could be an effective inhibitor at a human consumption level of the growth of A. parasiticus. More research is needed to study the inhibitory effects of the main active component of garlic.

Effects of fungal (Lentinussajor-caju) treated oil palm frond on performance and carcass characteristics in finishing goats

  • Chanjula, Pin;Petcharat, Vasun;Cherdthong, Anusorn
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.811-818
    • /
    • 2017
  • Objective: This experiment was conducted to investigate the effects of fungal treated oil palm fronds (FTOPF) on performance, carcass traits, meat quality, and muscle chemical composition. Methods: Eighteen growing crossbred male goats (Thai Native${\times}$Anglo Nubian) with $18.7{\pm}2.0kg$ of initial body weight (BW) were stratified and blocked by BW in a randomized complete block design. Three diets containing 30% of oil palm fronds (OPF) either untreated (UOPF) or treated with Lentinussajor-caju (FTOPF) with or without urea (FTOPFU) were used as roughage sources in total mixed rations (TMRs). The diets were offered ad libitum and weight gain was determined. At the end of the experimental period, the harvest data and carcass characteristics of the goats were recorded, and muscular longissimus dorsi composition was determined. Results: No significant effect of fungal treated (FT) inclusion was observed in any of the feed intake, growth performance, and carcass characteristics. Likewise, no apparent effects on carcass composition and muscle chemical composition were detected in this study, except for hind leg and chump were affected (p<0.05) by FT inclusion. Conclusion: In conclusion, feeding of fungal (Lentinussajor-caju) treated oil palm frond in TMR diet did not affect performance and carcass characteristics in finishing goats.

Fungal Taxol Extracted from Cladosporium oxysporum Induces Apoptosis in T47D Human Breast Cancer Cell Line

  • Raj, Kathamuthu Gokul;Sambantham, Shanmugam;Manikanadan, Ramar;Arulvasu, Chinnansamy;Pandi, Mohan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6627-6632
    • /
    • 2014
  • Purpose: The present study concerns molecular mechanisms involved in induction of apoptosis by a fungal taxol extracted from the fungus Cladosporium oxysporum in T47D human breast cancer cells. Materials and Methods: Apoptosis-induced by the fungal taxol was assessed by MTT assay, nuclear staining, DNA fragmentation, flow cytometry and pro- as well as anti-apoptotic protein expression by Western blotting. Results: Our results showed inhibition of T47D cell proliferation with an $IC_{50}$ value of $2.5{\mu}M/ml$ after 24 h incubation. It was suggested that the extract may exert its anti-proliferative effect on human breast cancer cell line by suppressing growth, arresting through the cell cycle, increase in DNA fragmentation as well as down-regulation of the expression of NF-${\kappa}B$, Bcl-2 and Bcl-XL and up-regulation of pro-apoptotic proteins like Bax, cyt-C and caspase-3. Conclusions: We propose that the fungal taxol contributes to growth inhibition in the human breast cancer cell through apoptosis induction via a mitochondrial mediated pathway, with possible potential as an anticancer therapeutic agent.

Fungal Endophytes of Alnus incana ssp. rugosa and Alnus alnobetula ssp. crispa and Their Potential to Tolerate Heavy Metals and to Promote Plant Growth

  • Lalancette, Steve;Lerat, Sylvain;Roy, Sebastien;Beaulieu, Carole
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.415-429
    • /
    • 2019
  • Soil contamination by metals is of particular interest, given that their retention times within the profile can be indefinite. Thus, phytostabilization can be viewed as a means of limiting metal toxicity in soils. Due to their ability to grow on contaminated soils, alders have repeatedly been used as key species in phytostabilization efforts. Alder ability to grow on contaminated sites stems, in part, from its association with microbial endophytes. This work emphasizes the fungal endophytes populations associated with Alnus incana ssp. rugosa and Alnus alnobetula ssp. crispa (previously A. viridis ssp. crispa) under a phytostabilization angle. Fungal endophytes were isolated from alder trees that were growing on or near disturbed environments; their tolerances to Cu, Ni, Zn, and As, and acidic pH (4.3, 3, and 2) were subsequently assessed. Cryptosporiopsis spp. and Rhizoscyphus spp. were identified as fungal endophytes of Alnus for the first time. When used as inoculants for alder, some isolates promoted plant growth, while others apparently presented antagonistic relationships with the host plant. This study reports the first step in finding the right fungal endophytic partners for two species of alder used in phytostabilization of metal-contaminated mining sites.

Effects of Ionizing Radiation on Postharvest Fungal Pathogens

  • Jeong, Rae-Dong;Shin, Eun-Jung;Chu, Eun-Hee;Park, Hae-Jun
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.176-180
    • /
    • 2015
  • Postharvest diseases cause losses in a wide variety of crops around the world. Irradiation, a useful nonchemical approach, has been used as an alternative treatment for fungicide to control plant fungal pathogens. For a preliminary study, ionizing radiations (gamma, X-ray, or e-beam irradiation) were evaluated for their antifungal activity against Botrytis cinerea, Penicillium expansum, and Rhizopus stolonifer through mycelial growth, spore germination, and morphological analysis under various conditions. Different fungi exhibited different radiosensitivity. The inhibition of fungal growth showed in a dose-dependent manner. Three fungal pathogens have greater sensitivity to the e-beam treatment compared to gamma or X-ray irradiations. The inactivation of individual fungal-viability to different irradiations can be considered between 3-4 kGy for B. cinerea and 1-2 kGy for P. expansum and R. stolonifer based on the radiosensitive and radio-resistant species, respectively. These preliminary data will provide critical information to control postharvest diseases through radiation.