• Title/Summary/Keyword: Fungal Endophytes

Search Result 64, Processing Time 0.026 seconds

Fungal Endophytes from Three Cultivars of Panax ginseng Meyer Cultivated in Korea

  • Park, Sang-Un;Lim, Hyoun-Sub;Park, Kee-Choon;Park, Young-Hwan;Bae, Han-Hong
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.107-113
    • /
    • 2012
  • In order to investigate the diversity of endophytes, fungal endophytes in Panax ginseng Meyer cultivated in Korea were isolated and identified using internal transcribed spacer (ITS) sequences of ribosomal DNA. Three cultivars of 3-year-old ginseng roots (Chunpoong, Yunpoong, and Gumpoong) were used to isolate fungal endophytes. Surface sterilized ginseng roots were placed on potato dextrose agar plates supplemented with ampicilin and streptomycin to inhibit bacterial growth. Overall, 38 fungal endophytes were isolated from 12 ginseng roots. According to the sequence analysis of the ITS1-5.8S-ITS2, 38 fungal isolates were classified into 4 different fungal species, which were Phoma radicina, Fusarium oxysporum, Setophoma terrestris and Ascomycota sp. 2-RNK. The most dominant fungal endophyte was P. radicina in 3 cultivars. The percentage of dominant endophytes of P. radicina was 65.8%. The percentage of colonization frequency of P. radicina was 80%, 52.9%, and 75% in Chunpoong, Yunpoong, and Gumpoong, respectively. The second most dominant fungal endophyte was F. oxysporum. The diversity of the fungal endophytes was low and no ginseng cultivar specificity among endophytes was detected in this study. The identified endophytes can be potential fungi for the production of bioactive compounds and control against ginseng pathogens.

Age-dependent Distribution of Fungal Endophytes in Panax ginseng Roots Cultivated in Korea

  • Park, Young-Hwan;Kim, Young-Chang;Park, Sang-Un;Lim, Hyoun-Sub;Kim, Joon-Bum;Cho, Byoung-Kwan;Bae, Han-Hong
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.327-333
    • /
    • 2012
  • Fungal endophytes were isolated from 1-, 2-, 3-, and 4-year-old ginseng roots (Panax ginseng Meyer) cultivated in Korea. The isolated fungal endophytes were identified based on sequence analysis of the internal transcribed spacer and morphological characterization by microscopic observations. A total of 81 fungal endophytes were isolated from 24 ginseng roots. Fungal endophytes were classified into 9 different fungal species and 2 unknown species. Ginseng roots that were 1-, 2-, 3-, and 4-years old were colonized by 2, 6, 8, and 5 species of fungal endophytes, respectively. While Phoma radicina was the most frequent fungal endophyte in 2-, 3-, and 4-year-old ginseng roots, Fusarium solani was the dominant endophyte in 1-year-old ginseng roots. The colonization frequencies (CF) varied with the host age. The CF were 12%, 40%, 31%, and 40% for 1-, 2-, 3-, and 4-year-old ginseng roots, respectively. We found a variety of fungal endophytes that were distributed depending on the age of ginseng plants.

Effects of Water Stress on the Endophytic Fungal Communities of Pinus koraiensis Needles Infected by Cenangium ferruginosum

  • Lee, Sun Keun;Lee, Seung Kyu;Bae, Hanhong;Seo, Sang-Tae;Lee, Jong Kyu
    • Mycobiology
    • /
    • v.42 no.4
    • /
    • pp.331-338
    • /
    • 2014
  • To examine the effects of water stress and Cenangium ferruginosum (CF) on the fungal endophytic community of needles of Pinus koraiensis (PK), fungal endophytes isolated from the needles of 5-year-old PK seedlings were compared before and after exposure to water stress conditions and artificial inoculation with CF ascospores. Artificial CF inoculation was successfully confirmed using PCR with CF-specific primers (CfF and CfR). For comparison of the degree of water deficit in water-stressed and control groups of PK seedlings infected with CF, the water saturation deficit and water potential were measured. Lower water potential estimates were found in the water-stressed seedlings than in the control group. The fungal endophytes isolated from the second-year needles of non-water-stressed seedlings before and after CF inoculation revealed that primary saprobes were approximately 30% and 71.7%, respectively, and the remaining endophytes were rot fungi or pathogens. Sixty days after CF inoculation, diverse fungal endophytes in the first-year needles were isolated from the water-stressed seedlings. However, some fungal endophytes isolated from the non-water-stressed seedlings were also identified. Fungal endophytes in the second-year needles of the water-stressed and non-water-stressed seedlings were approximately 8% and 71.7% of saprobes, respectively, and the remaining endophytes were rot fungi or pathogens. On the basis of the results, we conclude that water deficit and CF can have an effect on fungal endophytic communities in the needles of PK seedlings.

Fungal Endophytes of Alnus incana ssp. rugosa and Alnus alnobetula ssp. crispa and Their Potential to Tolerate Heavy Metals and to Promote Plant Growth

  • Lalancette, Steve;Lerat, Sylvain;Roy, Sebastien;Beaulieu, Carole
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.415-429
    • /
    • 2019
  • Soil contamination by metals is of particular interest, given that their retention times within the profile can be indefinite. Thus, phytostabilization can be viewed as a means of limiting metal toxicity in soils. Due to their ability to grow on contaminated soils, alders have repeatedly been used as key species in phytostabilization efforts. Alder ability to grow on contaminated sites stems, in part, from its association with microbial endophytes. This work emphasizes the fungal endophytes populations associated with Alnus incana ssp. rugosa and Alnus alnobetula ssp. crispa (previously A. viridis ssp. crispa) under a phytostabilization angle. Fungal endophytes were isolated from alder trees that were growing on or near disturbed environments; their tolerances to Cu, Ni, Zn, and As, and acidic pH (4.3, 3, and 2) were subsequently assessed. Cryptosporiopsis spp. and Rhizoscyphus spp. were identified as fungal endophytes of Alnus for the first time. When used as inoculants for alder, some isolates promoted plant growth, while others apparently presented antagonistic relationships with the host plant. This study reports the first step in finding the right fungal endophytic partners for two species of alder used in phytostabilization of metal-contaminated mining sites.

Diversity and Plant Growth Promotion of Fungal Endophytes in Five Halophytes from the Buan Salt Marsh

  • Khalmuratova, Irina;Choi, Doo-Ho;Yoon, Hyeok-Jun;Yoon, Tae-Myung;Kim, Jong-Guk
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.408-418
    • /
    • 2021
  • The diversity and plant growth-promoting ability of fungal endophytes that are associated with five halophytic plant species (Phragmites australis, Suaeda australis, Limonium tetragonum, Suaeda glauca Bunge, and Suaeda maritima) growing in the Buan salt marsh on the west coast of South Korea have been explored. About 188 fungal strains were isolated from these plant samples' roots and were then studied with the use of the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2). The endophytic fungal strains belonged to 33 genera. Alternaria (18%) and Fusarium (12.8%), of the classes Dothideomycetes and Sordariomycetes, were most rampant in the coastal salt marsh plants. There was a higher diversity in fungal endophytes that are isolated from S. glauca Bunge than in isolates from other coastal salt marsh plants. Plant growth-promoting experiments with the use of Waito-C rice seedlings show that some of the fungal strains could encourage a more efficient growth than others. Furthermore, gibberellins (GAs) GA1, GA3, and GA9 were seen in the Sa-1-4-3 isolate (Acrostalagmus luteoalbus) culture filtrate with a gas chromatography/mass spectrometry.

Diversity and Bioactive Potential of Culturable Fungal Endophytes of Medicinal Shrub Berberis aristata DC.: A First Report

  • Sharma, Supriya;Gupta, Suruchi;Dhar, Manoj K.;Kaul, Sanjana
    • Mycobiology
    • /
    • v.46 no.4
    • /
    • pp.370-381
    • /
    • 2018
  • Bioactive natural compounds, isolated from fungal endophytes, play a promising role in the search for novel drugs. They are an inspiring source for researchers due to their enormous structural diversity and complexity. During the present study fungal endophytes were isolated from a well-known medicinal shrub, Berberis aristata DC. and were explored for their antagonistic and antioxidant potential. B. aristata, an important medicinal shrub with remarkable pharmacological properties, is native to Northern Himalayan region. A total of 131 endophytic fungal isolates belonging to eighteen species and nine genera were obtained from three hundred and thirty surface sterilized segments of different tissues of B. aristata. The isolated fungi were classified on the basis of morphological and molecular analysis. Diversity and species richness was found to be higher in leaf tissues as compared to root and stem. Antibacterial activity demonstrated that the crude ethyl acetate extract of 80% isolates exhibited significant results against one or more bacterial pathogens. Ethyl acetate extract of Alternaria macrospora was found to have potential antibacterial activity. Significant antioxidant activity was also found in crude ethyl acetate extracts of Alternaria alternata and Aspergillus flavus. Similarly, antagonistic activity of the fungal endophytes revealed that all antagonists possessed inhibition potential against more than one fungal pathogen. This study is an important step towards tapping endophytic fungal diversity for bioactive metabolites which could be a step forward towards development of novel therapeutic agents.

Plant Protective and Growth Promoting Effects of Seed Endophytes in Soybean Plants

  • Jiwon Kim;Seong-Ho Ahn;Ji Sun Yang;Seonwoo Choi;Ho Won Jung;Junhyun Jeon
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.513-521
    • /
    • 2023
  • Seed-borne diseases reduce not only the seed germination and seedling growth but also seed quality, resulting in the significant yield loss in crop production. Plant seed harbors diverse microbes termed endophytes other than pathogens inside it. However, their roles and application to agricultures were rarely understood and explored to date. Recently, we had isolated from soybean seeds culturable endophytes exhibiting in-vitro antagonistic activities against common bacterial and fungal seed-borne pathogens. In this study, we evaluated effects of seed treatment with endophytes on plant growth and protection against the common seed-borne pathogens: four fungal pathogens (Cercospora sojina, C. kikuchii, Septoria glycines, Diaporthe eres) and two bacterial pathogens (Xanthomonas axonopodis pv. glycines, Pseudomonas syringae pv. tabaci). Our experiments showed that treatment of soybean seeds with seed endophytes clearly offer protection against seed-borne pathogens. We also found that some of the endophytes promote plant growth in addition to the disease suppression. Taken together, our results demonstrate agricultural potential of seed endophytes in crop protection.

Culturable Fungal Endophytes Isolated from the Roots of Coastal Plants Inhabiting Korean East Coast

  • Kim, Hyun;You, Young-Hyun;Yoon, Hyeokjun;Seo, Yeonggyo;Kim, Ye-Eun;Choo, Yeon-Sik;Lee, In-Jung;Shin, Jae-Ho;Kim, Jong-Guk
    • Mycobiology
    • /
    • v.42 no.2
    • /
    • pp.100-108
    • /
    • 2014
  • Twelve plant species were collected from the east coast of Korea to identify culturable endophytes present in their roots. The fungal internal transcribe spacer (ITS) region (ITS1-5.8SrRNA-ITS2) was used as a DNA barcode for identification of fungi. A total of 194 fungal strains were identified and categorized into 31 genera. The genus Penicillium accounted for the largest number of strains, followed by the genus Aspergillus. Furthermore, using 5 statistical methods, the diversity indices of the fungi were calculated at the genus level. After comprehensive evaluation, the endophytic fungal group from Phragmites australis ranked highest in diversity analyses. Several strains responsible for plant growth and survival (Penicillium citrinum, P. funiculosum, P. janthinellum, P. restrictum, and P. simplicissimum), were also identified. This study provides basic data on the sheds light on the symbiotic relationship between coastal plants and fungi.

Insecticidal Activity of Ethyl Acetate Extracts from Culture Filtrates of Mangrove Fungal Endophytes

  • Abraham, Silva;Basukriadi, Adi;Pawiroharsono, Suyanto;Sjamsuridzal, Wellyzar
    • Mycobiology
    • /
    • v.43 no.2
    • /
    • pp.137-149
    • /
    • 2015
  • In the search for novel potent fungi-derived bioactive compounds for bioinsecticide applications, crude ethyl acetate culture filtrate extracts from 110 mangrove fungal endophytes were screened for their toxicity. Toxicity tests of all extracts against brine shrimp (Artemia salina) larvae were performed. The extracts with the highest toxicity were further examined for insecticidal activity against Spodoptera litura larvae and acetylcholinesterase (AChE) inhibition activity. The results showed that the extracts of five isolates exhibited the highest toxicity to brine shrimp at 50% lethal concentration ($LC_{50}$) values of 7.45 to 10.24 ppm. These five fungal isolates that obtained from Rhizophora mucronata were identified based on sequence data analysis of the internal transcribed spacer region of rDNA as Aspergillus oryzae (strain BPPTCC 6036), Emericella nidulans (strains BPPTCC 6035 and BPPTCC 6038), A. tamarii (strain BPPTCC 6037), and A. versicolor (strain BPPTCC 6039). The mean percentage of S. litura larval mortality following topical application of the five extracts ranged from 16.7% to 43.3%. In the AChE inhibition assay, the inhibition rates of the five extracts ranged from 40.7% to 48.9%, while eserine (positive control) had an inhibition rate of 96.8%, at a concentration of 100 ppm. The extracts used were crude extracts, so their potential as sources of AChE inhibition compounds makes them likely candidates as neurotoxins. The high-performance liquid chromatography profiles of the five extracts differed, indicating variations in their chemical constituents. This study highlights the potential of culture filtrate ethyl acetate extracts of mangrove fungal endophytes as a source of new potential bioactive compounds for bioinsecticide applications.

Identification of Two Fungal Endophytes Associated with the Endangered Orchid Orchis militaris L.

  • Vendramin, Elena;Gastaldo, Andrea;Tondello, Alessandra;Baldan, Barbara;Villani, Mariacristina;Squartini, Andrea
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.630-636
    • /
    • 2010
  • A survey of the endangered orchid Orchis militaris populations was carried out in north-eastern Italy. The occurrence of fungal root endophytes was investigated by light and electron microscopies and molecular techniques. Two main sites of presence were individuated in the Euganean Hills, differing as to the percentage of flowering individuals and of capsules completing maturity. Fluorescence microscopy revealed an intracellular cortical colonization by hyphal pelotons. Two ITS PCR products co-amplified. Sequencing revealed for the former an identity and a high similarity (99%) with a Tulasnellaceae (Basidiomycota) fungus found within tissues of the same host in independent studies in Hungary and Estonia, suggesting an interesting case of tight specificity throughout the Eurosiberian home range. The second amplicon had 99% similarity with Tetracladium species (Ascomycota) recently demonstrated as potential endophytes. TEM revealed two different hyphal structures. Double fungal colonization appears to occur in Orchis militaris and the possible requirement of a specific fungal partner throws light on the causes of this plant's rarity and threatened status.