• Title/Summary/Keyword: Fundamental theorem of Algebra

Search Result 12, Processing Time 0.015 seconds

On Symmetric Functions (대칭함수의 유래)

  • Koh, Youngmee;Ree, Sangwook
    • Journal for History of Mathematics
    • /
    • v.34 no.2
    • /
    • pp.39-54
    • /
    • 2021
  • One of the topics in school mathematics is the relation between the roots and the coefficients of equations. It deals with the way to find the roots out of the coefficients of equations. One of the concepts derived from the theory of equations is symmetric functions. Symmetry is a kind of functionality of human cognition. It is, in mathematics, geometrically related to the congruence and the similarity of figures, and algebraically a kind of invariants. We look at stories on the appearance of symmetric functions through the development of the theory of equations.

Left Translations and Isomorphism Theorems for Menger Algebras of Rank n

  • Kumduang, Thodsaporn;Leeratanavalee, Sorasak
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.2
    • /
    • pp.223-237
    • /
    • 2021
  • Let n be a fixed natural number. Menger algebras of rank n can be regarded as a canonical generalization of arbitrary semigroups. This paper is concerned with studying algebraic properties of Menger algebras of rank n by first defining a special class of full n-place functions, the so-called a left translation, which possess necessary and sufficient conditions for an (n + 1)-groupoid to be a Menger algebra of rank n. The isomorphism parts begin with introducing the concept of homomorphisms, and congruences in Menger algebras of rank n. These lead us to establish a quotient structure consisting a nonempty set factored by such congruences together with an operation defined on its equivalence classes. Finally, the fundamental homomorphism theorem and isomorphism theorems for Menger algebras of rank n are given. As a consequence, our results are significant in the study of algebraic theoretical Menger algebras of rank n. Furthermore, we extend the usual notions of ordinary semigroups in a natural way.