• Title/Summary/Keyword: Fundamental characteristics

Search Result 2,706, Processing Time 0.026 seconds

A Study on the Evaluation of Dynamic Characteristics of the Optmized Shells (최적화된 쉘의 동특성 분석 및 평가에 대한 연구)

  • Lee Sang-Jin;Kim Ha-Ryong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.341-346
    • /
    • 2006
  • This paper provides the resuIts on the evaluation of dynamic characteristics of the optimized shells. Five fundamental technologies such as computer-aided geometric design, automatic mesh generation, shell finite element, design sensitivity analysis and shell optimization process, are used for shell optimization maximizing the fundamental natural frequency. A dome shell is adopted for the shell shape optimization and the dynamic characteristic of the optimized shell such as the variation of natural frequencies is then investigated. From the investigation, more constraint functions related to shell natural frequencies is necessarily required to effectively control dynamic characteristics of the optimized shells.

  • PDF

An Experimental Study on the Vertical Vibration Transfer in Horizontal Way according to Shear Wall Building Structures due to Exciting Vibration Forces (전단벽식 건축구조물 수직진동의 수평방향 전달특성에 관한 실험연구)

  • Chun, Ho-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.270-282
    • /
    • 2006
  • In general, the vertical vibration problems for strength of members and serviceability of building structures are not considered in structural design process, but the prediction of the vertical vibration is very important and essential to structural design process. This study aims to investigate the characteristics of vertical vibration in terms of the transfer of horizontal directions to near-rooms on the shear wall building structures. In order to examine the characteristics of vertical vibration, the modal test and the impact (heel-drop and hammer) excitation experiments were conducted several times on two building structure. The results from the experiments are analyzed and compared with the results. The results of this study suggest that the characteristics of vertical vibration transfer in horizontal way are effected from the fundamental frequency of the slabs, and are effected the shear wall on the Path of the vibration transfer.

Characteristics of Antiwashout Underwater Concrete with the Mineral Admixtures for Underwater Concrete Structures (수중 콘크리트 구조물을 위한 광물질 혼화제를 첨가한 수중불분리성 콘크리트의 특성)

  • 원종필;임경하;박찬기;김완영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.6
    • /
    • pp.90-98
    • /
    • 2002
  • Recently the use of the antiwashout underwater concrete with the antiwashout admixture is increased considerably. Antiwashout underwater concrete is quite different in concept from conventional underwater concrete. By mixing an antiwashout admixture with concrete, the viscosity of the concrete is increased and its resistance to segregation under the washing action of water is enhanced. The aim of this research is to evaluate the fundamental characteristics and permeability of antiwashout underwater concrete with fly ash and blast-furnace slag. Test Results of antiwashout underwater concrete with fly ash and blast-furnace slag fluence can provide its excellent fundamental characteristics and resistance of permeability.

Dynamic characteristics of structures with multiple tuned mass dampers

  • Jangid, R.S.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.5
    • /
    • pp.497-509
    • /
    • 1995
  • Effectiveness of multiple tuned mass dampers (MTMD) in suppressing the dynamic response of base excited structure for first mode vibration is investigated. The effectiveness of the MTMD is expressed by the ratio of the root mean square (RMS) displacement of the structure with MTMD to corresponding displacement without MTMD. The frequency content of base excitation is modelled as a broad-band stationary random process. The MTMD's with uniformly distributed natural frequencies are considered for this purpose. A parametric study is conducted to investigate the fundamental characteristics of the MTMD's and the effect of important parameters on the effectiveness of the MTMD's. The parameters include: the fundamental characteristics of the MTMD system such as damping, mass ratio, total number of MTMD, tuning frequency ratio, frequency spacing of the dampers and frequency content of the base excitation. It has been shown that MTMD can be more effective and more robust than a single TMD with equal mass and damping ratio.

Characteristics of Water-soluble Polysaccharide, Showing Inhibiting Activity on ${\alpha}-Glucosidase$, in Cordyceps militaris

  • Chung, Ha-Yull;Yoo, Mi-Kyong;Kawagishi, Hirokazu
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.667-671
    • /
    • 2009
  • Extract of water-soluble polysaccharide (CFWx), showing inhibiting activity on ${\alpha}-glucosidase$, was prepared from the fruiting bodies of Cordyceps militaris by hot-water extraction, and ethanol precipitation. Chemical characteristics of CFWx were as follows: carbohydrate content 30% including 16% of uronic acid; 51% protein content; monosaccharide composition, Man:Glu:Gal (30:43:27); molecular weight $3-5{\times}10^4$. CFWx was further purified by ion-exchange, gel-permeation, and affinity chromatography and $CFWx-AH-{\alpha}$ fraction was isolated. Fundamental structure of $CFWx-AH-{\alpha}$ was deduced as ${\alpha}-(1{\to}4$)-D-glucan with ${\alpha}-(1{\to}3$)- and/or ${\alpha}-(1{\to}6$)-D-glycosidic side chains based on methylation analysis.

A Fundamental Study of Fractal Characteristics for a Crack Growth Profile (성장균열 형상에 대한 기초적 프랙탈 특성연구)

  • 권오헌
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.522-528
    • /
    • 1998
  • This paper presents a fundamental fractal characteristics of the growing crack that has an irregularity producing a zigzag crack contour. This irregularity is analysed by a fractal geometry in a box counting method that is a very simple technique. First the fractal dimensions and actual fractal extensive crack length are obtained. Also a fractal fracture energy relation with a fractal dimension is found so as to get fractal crack behaviors. Thus it can be shown that the fractal dimension has a possibility as a fracture parameter in a real crack growth length meaning.

  • PDF

A Removal Efficiency from Fundamental Characteristics of Microbubbles and Particles in Electroflotation (전해부상법에서 미세기포와 입자의 기초특성 연구를 통한 제거효율)

  • Dockko, Seok;Kim, Wontae;Han, Mooyoung;Kim, Mikyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.161-172
    • /
    • 2005
  • Recently, water treatment methods utilizing microbubbles such as DAF and EF are gaining interest and being studied. Current study is focused on the fundamental research of electroflotation by examining the characteristics of microbubbles and particles. The objects of this research consist of two things; (1) theoretical modeling of microbubble-particle collision, (2) the experimental investigation of removal efficiency of turbidity in electroflotation. From investigation, the mechanism of electroflotation can be explained not only by the characteristics of microbubbles and particles but also the chemistry of aluminum dissolved from aluminum electrode during the electroflotation experiment.

Estimation of fundamental period of reinforced concrete shear wall buildings using self organization feature map

  • Nikoo, Mehdi;Hadzima-Nyarko, Marijana;Khademi, Faezehossadat;Mohasseb, Sassan
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.237-249
    • /
    • 2017
  • The Self-Organization Feature Map as an unsupervised network is very widely used these days in engineering science. The applied network in this paper is the Self Organization Feature Map with constant weights which includes Kohonen Network. In this research, Reinforced Concrete Shear Wall buildings with different stories and heights are analyzed and a database consisting of measured fundamental periods and characteristics of 78 RC SW buildings is created. The input parameters of these buildings include number of stories, height, length, width, whereas the output parameter is the fundamental period. In addition, using Genetic Algorithm, the structure of the Self-Organization Feature Map algorithm is optimized with respect to the numbers of layers, numbers of nodes in hidden layers, type of transfer function and learning. Evaluation of the SOFM model was performed by comparing the obtained values to the measured values and values calculated by expressions given in building codes. Results show that the Self-Organization Feature Map, which is optimized by using Genetic Algorithm, has a higher capacity, flexibility and accuracy in predicting the fundamental period.

Numerical Study on Coolant Flow Distribution at the Core Inlet for an Integral Pressurized Water Reactor

  • Sun, Lin;Peng, Minjun;Xia, Genglei;Lv, Xing;Li, Ren
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.71-81
    • /
    • 2017
  • When an integral pressurized water reactor is operated under low power conditions, once-through steam generator group operation strategy is applied. However, group operation strategy will cause nonuniform coolant flow distribution at the core inlet and lower plenum. To help coolant flow mix more uniformly, a flow mixing chamber (FMC) has been designed. In this paper, computational fluid dynamics methods have been used to investigate the coolant distribution by the effect of FMC. Velocity and temperature characteristics under different low power conditions and optimized FMC configuration have been analyzed. The results illustrate that the FMC can help improve the nonuniform coolant temperature distribution at the core inlet effectively; at the same time, the FMC will induce more resistance in the downcomer and lower plenum.

Fundamental vibration frequency prediction of historical masonry bridges

  • Onat, Onur
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.155-162
    • /
    • 2019
  • It is very common to find an empirical formulation in an earthquake design code to calculate fundamental vibration period of a structural system. Fundamental vibration period or frequency is a key parameter to provide adequate information pertinent to dynamic characteristics and performance assessment of a structure. This parameter enables to assess seismic demand of a structure. It is possible to find an empirical formulation related to reinforced concrete structures, masonry towers and slender masonry structures. Calculated natural vibration frequencies suggested by empirical formulation in the literatures has not suits in a high accuracy to the case of rest of the historical masonry bridges due to different construction techniques and wide variety of material properties. For the listed reasons, estimation of fundamental frequency gets harder. This paper aims to present an empirical formulation through Mean Square Error study to find ambient vibration frequency of historical masonry bridges by using a non-linear regression model. For this purpose, a series of data collected from literature especially focused on the finite element models of historical masonry bridges modelled in a full scale to get first global natural frequency, unit weight and elasticity modulus of used dominant material based on homogenization approach, length, height and width of the masonry bridge and main span length were considered to predict natural vibration frequency. An empirical formulation is proposed with 81% accuracy. Also, this study draw attention that this accuracy decreases to 35%, if the modulus of elasticity and unit weight are ignored.