• 제목/요약/키워드: Functionally graded

검색결과 1,102건 처리시간 0.035초

Post-buckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Mollaee, Saeed;Barati, Mohammad Reza;Afshari, Behzad Mohasel;Hamouda, A.M.S.
    • Computers and Concrete
    • /
    • 제26권1호
    • /
    • pp.21-30
    • /
    • 2020
  • Buckling and post-buckling behaviors of geometrically imperfect annular sector plates made from nanoparticle reinforced composites have been investigated. Two types of nanoparticles are considered including graphene oxide powders (GOPs) and silicone oxide (SiO2). Nanoparticles are considered to have uniform and functionally graded distributions within the matrix and the material properties are derived using Halpin-Tsai procedure. Annular sector plate is formulated based upon thin shell theory considering geometric nonlinearity and imperfectness. After solving the governing equations via Galerkin's technique, it is showed that the post-buckling curves of annular sector plates rely on the geometric imperfection, nanoparticle type, amount of nanoparticles, sector inner/outer radius and sector open angle.

Electric potential redistribution due to time-dependent creep in thick-walled FGPM cylinder based on Mendelson method of successive approximation

  • Kheirkhah, S.;Loghman, A.
    • Structural Engineering and Mechanics
    • /
    • 제53권6호
    • /
    • pp.1167-1182
    • /
    • 2015
  • In this study, the stresses and electric potential redistributions of a cylinder made from functionally graded piezoelectric material (FGPM) are investigated. All the mechanical, thermal and piezoelectric properties are modeled as power-law distribution of volume fraction. Using the coupled electro-thermo-mechanical relations, strain-displacement relations, Maxwell and equilibrium equations are obtained including the time dependent creep strains. Creep strains are time, temperature and stress dependent, the closed form solution cannot be found for this constitutive differential equation. A semi-analytical method in conjunction with the Mendelson method of successive approximation is therefore proposed for this analysis. Similar to the radial stress histories, electric potentials increase with time, because the latter is induced by the former during creep deformation of the cylinder, justifying industrial application of such a material as efficient actuators and sensors.

On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams

  • Tagrara, S.H.;Benachour, Abdelkader;Bouiadjra, Mohamed Bachir;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1259-1277
    • /
    • 2015
  • In this work, a trigonometric refined beam theory for the bending, buckling and free vibration analysis of carbon nanotube-reinforced composite (CNTRC) beams resting on elastic foundation is developed. The significant feature of this model is that, in addition to including the shear deformation effect, it deals with only 3 unknowns as the Timoshenko beam (TBM) without including a shear correction factor. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of reinforcement. The material properties of the CNTRC beams are assessed by employing the rule of mixture. To examine accuracy of the present theory, several comparison studies are investigated. Furthermore, the effects of different parameters of the beam on the bending, buckling and free vibration responses of CNTRC beam are discussed.

Analyses of tapered fgm beams with nonlocal theory

  • Pradhan, S.C.;Sarkar, A.
    • Structural Engineering and Mechanics
    • /
    • 제32권6호
    • /
    • pp.811-833
    • /
    • 2009
  • In the present article bending, buckling and vibration analyses of tapered beams using Eringen non-local elasticity theory are being carried out. The associated governing differential equations are solved employing Rayleigh-Ritz method. Both Euler-Bernoulli and Timoshenko beam theories are considered in the analyses. Present results are in good agreement with those reported in literature. Beam material is considered to be made up of functionally graded materials (fgms). Non-local analyses for tapered beam with simply supported - simply supported, clamped - simply supported and clamped - free boundary conditions are carried out and discussed. Further, effect of length to height ratio on maximum deflections, vibration frequencies and critical buckling loads are studied.

Frequency and critical fluid velocity analysis of pipes reinforced with FG-CNTs conveying internal flows

  • Ghaitani, M.;Majidian, A.
    • Wind and Structures
    • /
    • 제24권3호
    • /
    • pp.267-285
    • /
    • 2017
  • This paper addresses vibration and instability of embedded functionally graded (FG)-carbon nanotubes (CNTs)-reinforced pipes conveying viscous fluid. The surrounding elastic medium is modeled by temperature-dependent orthotropic Pasternak medium. Flugge shell model is applied for mathematical modeling of structure. Based on energy method and Hamilton's principal, the motion equations are derived. Differential quadrature method (GDQM) is applied for obtaining the frequency and critical fluid velocity of system. The effects of different parameters such as volume percent of CNTs, elastic medium, boundary condition and geometrical parameters are discussed.

Buckling of sandwich plates with FG-CNT-reinforced layers resting on orthotropic elastic medium using Reddy plate theory

  • Shokravi, Maryam
    • Steel and Composite Structures
    • /
    • 제23권6호
    • /
    • pp.623-631
    • /
    • 2017
  • Present paper deals with the temperature-dependent buckling analysis of sandwich nanocomposite plates resting on elastic medium subjected to magnetic field. The lamina layers are reinforced with carbon nanotubes (CNTs) as uniform and functionally graded (FG). The elastic medium is considered as orthotropic Pasternak foundation with considering the effects of thermal loading on the spring and shear constants of medium. Mixture rule is utilized for obtaining the effective material properties of each layer. Adopting the Reddy shear deformation plate theory, the governing equations are derived based on energy method and Hamilton's principle. The buckling load of the structure is calculated with the Navier's method for the simply supported sandwich nanocomposite plates. Parametric study is conducted on the combined effects of the volume percent and distribution types of the CNTs, temperature change, elastic medium, magnetic field and geometrical parameters of the plates on the buckling load of the sandwich structure. The results show that FGX distribution of the CNTs leads to higher stiffness and consequently higher buckling load. In addition, considering the magnetic field increases the buckling load of the sandwich nanocomposite plate.

Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Nia, Alireza Farrokhi;Badnava, Salman;Hamouda, A.M.S.
    • Advances in nano research
    • /
    • 제8권2호
    • /
    • pp.149-156
    • /
    • 2020
  • The present paper explores forced vibrational properties of porosity-dependent functionally graded (FG) cylindrical nanoshells exposed to linear-type or triangular-type impulse load via classical shell theory (CST) and nonlocal strain gradient theory (NSGT). Employing such scale-dependent theory, two scale factors accounting for stiffness softening and hardening effects are incorporated in modeling of the nanoshell. Two sorts of porosity distributions called even and uneven have been taken into account. Governing equations obtained for porous nanoshell have been solved through inverse Laplace transforms technique to derive dynamical deflections. It is shown that transient responses of a nanoshell are affected by the form and position of impulse loading, amount of porosities, porosities dispensation, nonlocal and strain gradient factors.

Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM

  • Abdulrazzaq, Mohammed Abdulraoof;Muhammad, Ahmed K.;Kadhim, Zeyad D.;Faleh, Nadhim M.
    • Coupled systems mechanics
    • /
    • 제9권3호
    • /
    • pp.201-217
    • /
    • 2020
  • This paper employs differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT) for studying free vibrational characteristics of porous functionally graded (FG) nanoplates coupled by visco-elastic foundation. A secant function based refined plate theory is used for mathematical modeling of the nano-size plate. Two scale factors are included in the formulation for describing size influences based on NSGT. The material properties for FG plate are porosity-dependent and defined employing a modified power-law form. Visco-elastic foundation is presented based on three factors including a viscous layer and two elastic layers.The governing equations achieved by Hamilton's principle are solved implementing DQM. The nanoplate vibration is shown to be affected by porosity, temperature rise,scale factors and viscous damping.

임의 형상의 복합재 모델링을 위한 CSG 기반 표현 (CSG-based Representation for Free-form Heterogeneous Object Modeling)

  • 신기훈;이진구
    • 한국CDE학회논문집
    • /
    • 제11권4호
    • /
    • pp.235-245
    • /
    • 2006
  • This paper proposes a CSG-based representation scheme for heterogeneous objects including multi-material objects and Functionally Graded Materials (FGMs). In particular, this scheme focuses on the construction of complicated heterogeneous objects guaranteeing desired material continuities at all the interfaces. In order to create various types of heterogeneous primitives, we first describe methods for specifying material composition functions such as geometry-independent, geometry-dependent functions. Constructive Material Composition (CMC) and corresponding heterogeneous Boolean Operators (e.g. material union, difference, intersection. and partition) are then proposed to illustrate how material continuities are dealt with. Finally, we describe the model hierarchy and data structure for computer representation. Even though the proposed scheme alone is sufficient for modeling all sorts of heterogeneous objects, the proposed scheme adopts a hybrid representation between CSG and decomposition. That is because hybrid representation can avoid the unnecessary growth of binary trees.

Development of $Al_2O_3-Ni$ FGMs Produced by Spark Plasma Sintering

  • Casari, Francesco;Zadra, Mario;Girardini, Luca;Molinari, Alberto
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.87-88
    • /
    • 2006
  • Ceramic-Metal Functionally Graded Materials (FGM) are of great interest for application as Thermal Barrier Coating (TBC) or Wear Resistant Coating (WRC). Spark Plasma Sintering (SPS) is a promising techniques for time-saving consolidation of laminated/graduated powder systems: SPS is a pressure-assisted electrical sintering method which directly applies a pulsed DC current as heat source. In the present work, production of $Al_2O_3-Ni$ FGMs by means of Spark Plasma Sintering is considered; effect of sintering condition on density, hardness and fracture toughness is studied. Problems correlated to this new processing technology are discussed.

  • PDF