• Title/Summary/Keyword: Functionally graded

Search Result 1,066, Processing Time 0.019 seconds

An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates

  • Bellifa, Hichem;Bakora, Ahmed;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.257-270
    • /
    • 2017
  • In this article, an efficient and simple refined theory is proposed for buckling analysis of functionally graded plates by using a new displacement field which includes undetermined integral variables. This theory contains only four unknowns, with is even less than the first shear deformation theory (FSDT). Governing equations are obtained from the principle of virtual works. The closed-form solutions of rectangular plates are determined. Comparison studies are carried out to check the validity of obtained results. The influences of loading conditions and variations of power of functionally graded material, modulus ratio, aspect ratio, and thickness ratio on the critical buckling load of functionally graded plates are examined and discussed.

Dynamic Characteristics of an Eccentric Crack in a Functionally Graded Piezoelectric Ceramic Strip

  • Shin, Jeong-Woo;Kim, Tae-Uk;Kim, Sung-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1582-1589
    • /
    • 2004
  • The dynamic response of an eccentric Griffith crack in functionally graded piezoelectric ceramic strip under anti-plane shear impact loading is ana lysed using integral transform method. Laplace transform and Fourier transform are used to reduce the problem to two pairs of dual integral equations, which are then expressed to Fredholm integral equations of the second kind. We assume that the properties of the functionally graded piezoelectric material vary continuously along the thickness. The impermeable crack boundary condition is adopted. Numerical values on the dynamic stress intensity factors are presented for the functionally graded piezoelectric material to show the dependence of the gradient of material properties and electric loadings.

A Study on Design of Functionally graded Materials (경사기능재료의 설계에 관한 연구)

  • 최덕기;경사기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.144-154
    • /
    • 1998
  • A functionally graded material is a nonhomogeneous material, which is composed of several different materials to maintain structural rigidity and endure high temperature loads. An analytical method is presenter to solve the unsteady heat conduction equation for nonhomogeneous materials. A one-dimensional infinite plate made of functionally graded material is considered. The approximate Green's function solution is derived and to be used to obtain the temperature distribution them the stress distributions may be obtained. The volume fraction, the porosity, the stress difference, and the stress ratio are the design parameters and are to be used to set up a systematic design procedure.

  • PDF

Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates using a novel shear deformation theory

  • Saidi, Hayat;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bedia, El Abbas Adda
    • Steel and Composite Structures
    • /
    • v.15 no.2
    • /
    • pp.221-245
    • /
    • 2013
  • This paper presents an analytical solution to the thermomechanical bending analysis of functionally graded sandwich plates by using a new hyperbolic shear deformation theory in which the stretching effect is included. The modulus of elasticity of plates is assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic ceramic material. The effects of functionally graded material (FGM) layer thickness, volume fraction index, layer thickness ratio, thickness ratio and aspect ratio on the deflections and stresses of functionally graded sandwich plates are investigated.

Non-linear longitudinal fracture in a functionally graded beam

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.441-453
    • /
    • 2018
  • Longitudinal fracture in a functionally graded beam configuration was studied analytically with taking into account the non-linear behavior of the material. A cantilever beam with two longitudinal cracks located symmetrically with respect to the centroid was analyzed. The material was functionally graded along the beam width as well as along the beam length. The fracture was studied in terms of the strain energy release rate. The influence of material gradient, crack location along the beam width, crack length and material non-linearity on the fracture behavior was investigated. It was shown that the analytical solution derived is very useful for parametric analyses of the non-linear longitudinal fracture behavior. It was found that by using appropriate material gradients in width and length directions of the beam, the strain energy release rate can be reduced significantly. Thus, the results obtained in the present paper may be applied for optimization of functionally graded beam structure with respect to the longitudinal fracture performance.

An analytical solution for bending and vibration responses of functionally graded beams with porosities

  • Zouatnia, Nafissa;Hadji, Lazreg;Kassoul, Amar
    • Wind and Structures
    • /
    • v.25 no.4
    • /
    • pp.329-342
    • /
    • 2017
  • This work presents a static and free vibration analysis of functionally graded metal-ceramic (FG) beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. A new displacement field containing integrals is proposed which involves only three variables. Based on the suggested theory, the equations of motion are derived from Hamilton's principle. This theory involves only three unknown functions and accounts for parabolic distribution of transverse shear stress. In addition, the transverse shear stresses are vanished at the top and bottom surfaces of the beam. The Navier solution technique is adopted to derive analytical solutions for simply supported beams. The accuracy and effectiveness of proposed model are verified by comparison with previous research. A detailed numerical study is carried out to examine the influence of the deflections, stresses and natural frequencies on the bending and free vibration responses of functionally graded beams.

A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates

  • Mahmoud, S.R.;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.569-578
    • /
    • 2017
  • In this research work, a simple and accurate hyperbolic plate theory for the buckling analysis of functionally graded sandwich plates is presented. The main interest of this theory is that, in addition to incorporating the thickness stretching effect (${\varepsilon}_z{\not=}0$), the displacement field is composed only of 5 unknowns as the first order shear deformation theory (FSDT), instead of 6 like in the well-known "higher order shear and normal deformation theories". Thus, the number of unknowns and governing equations for the present theory is reduced, significantly facilitating engineering analysis. Governing equations are obtained by employing the principle of minimum total potential energy. Comparison studies are performed to verify the validity of present results. A numerical investigation has been conducted considering and neglecting the thickness stretching effects on the buckling of sandwich plates with functionally graded skins. It can be concluded that the present theory is not only accurate but also simple in predicting the buckling response of sandwich plates with functionally graded skins.

Analysis of functionally graded plates using a sinusoidal shear deformation theory

  • Hadji, Lazreg
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.441-448
    • /
    • 2017
  • This paper uses the four-variable refined plate theory for the free vibration analysis of functionally graded material (FGM) rectangular plates. The plate properties are assumed to be varied through the thickness following a simple power law distribution in terms of volume fraction of material constituents. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Equations of motion are derived from the Hamilton's principle. The closed-form solutions of functionally graded plates are obtained using Navier solution. Numerical results of the refined plate theory are presented to show the effect of the material distribution, the aspect and side-to-thickness ratio on the fundamental frequencies. It can be concluded that the proposed theory is accurate and simple in solving the free vibration behavior of functionally graded plates.

The effect of different functionalities of FGM and FGPM layers on free vibration analysis of the FG circular plates integrated with piezoelectric layers

  • Arefi, M.
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1345-1362
    • /
    • 2015
  • The present paper deals with the free vibration analysis of the functionally graded solid and annular circular plates with two functionally graded piezoelectric layers at top and bottom subjected to an electric field. Classical plate theory (CPT) is used for description of the all deformation components based on a symmetric distribution. All the mechanical and electrical properties except Poisson's ratio can vary continuously along the thickness direction of the plate. The properties of plate core can vary from metal at bottom to ceramic at top. The effect of non homogeneous index of functionally graded and functionally graded piezoelectric sections can be considered on the results of the system. $1^{st}$ and $2^{nd}$ modes of natural frequencies of the system have been evaluated for both solid and annular circular plates, individually.

Bending and free vibration analysis of a smart functionally graded plate

  • Bian, Z.G.;Ying, J.;Chen, W.Q.;Ding, H.J.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.1
    • /
    • pp.97-113
    • /
    • 2006
  • A simply supported hybrid plate consisting of top and bottom functionally graded elastic layers and an intermediate actuating or sensing homogeneous piezoelectric layer is investigated by an elasticity (piezoelasticity) method, which is based on state space formulations. The general spring layer model is adopted to consider the effect of bonding adhesives between the piezoelectric layer and the two functionally graded ones. The two functionally graded layers are inhomogeneous along the thickness direction, which are approached by laminate models. The effect of interlaminar bonding imperfections on the static bending and free vibration of the smart plate is discussed in the numerical examples.