• Title/Summary/Keyword: Functionally Graded (FG) plates

Search Result 180, Processing Time 0.02 seconds

Mechanical buckling of functionally graded plates using a refined higher-order shear and normal deformation plate theory

  • Zenkour, A.M.;Aljadani, M.H.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.615-632
    • /
    • 2018
  • Mechanical buckling of a rectangular functionally graded plate is obtained in the current paper using a refined higher-order shear and normal deformation theory. The impact of transverse normal strain is considered. The material properties are microscopically inhomogeneous and vary continuously based on a power law form in spatial direction. Navier's procedure is applied to examine the mechanical buckling behavior of a simply supported FG plate. The mechanical critical buckling subjected to uniaxial and biaxial compression loads are determined. The numerical investigation are compared with the numerical results in the literature. The influences of geometric parameters, power law index and different loading conditions on the critical buckling are studied.

A novel four-unknown quasi-3D shear deformation theory for functionally graded plates

  • Hebbar, Nabil;Bourada, Mohamed;Sekkal, Mohamed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.599-611
    • /
    • 2018
  • In this article a four unknown quasi-3D shear deformation theory for the bending analysis of functionally graded (FG) plates is developed. The advantage of this theory is that, in addition to introducing the thickness stretching impact (${\varepsilon}_z{\neq}0$), the displacement field is modeled with only four variables, which is even less than the first order shear deformation theory (FSDT). The principle of virtual work is utilized to determine the governing equations. The obtained numerical results from the proposed theory are compared with the CPT, FSDT, and other quasi-3D HSDTs.

Mechanical and thermal stability investigation of functionally graded plates resting on elastic foundations

  • Houari, Ali;Benguediab, Mohamed;Bakora, Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.423-434
    • /
    • 2018
  • In present work, both the hyperbolic shear deformation theory and stress function concept are used to study the mechanical and thermal stability responses of functionally graded (FG) plates resting on elastic foundation. The accuracy of the proposed formulation is checked by comparing the computed results with those predicted by classical plate theory (CPT), first-order shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). Moreover, results demonstrate that the proposed formulation can achieve the same accuracy of the existing HSDTs which have more number of governing equations.

A new four-unknown refined theory based on modified couple stress theory for size-dependent bending and vibration analysis of functionally graded micro-plate

  • Amar, Lemya Hanifi Hachemi;Kaci, Abdelhakim;Yeghnem, Redha;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.89-102
    • /
    • 2018
  • This work investigates a novel plate formulation and a modified couple stress theory that introduces a variable length scale parameter is presented to discuss the static and dynamic of functionally graded (FG) micro-plates. A new type of third-order shear deformation theory of Reddy that use only 4 unknowns by including undetermined integral variables is proposed in this study. The equations of motion are derived from Hamilton's principle. Analytical solutions are obtained for a simply supported micro-plate. Numerical examples are presented to examine the effect of the length scale parameter on the responses of micro-plates. The obtained results are compared with the previously published results to demonstrate the correctness of the present formulation.

Dynamic of behavior for imperfect FGM plates resting on elastic foundation containing various distribution rates of porosity: Analysis and modeling

  • Kablia, Aicha;Benferhat, Rabia;Tahar, Hassaine Daouadji
    • Coupled systems mechanics
    • /
    • v.11 no.5
    • /
    • pp.389-409
    • /
    • 2022
  • During the manufacture of FGM plates, defects such as porosities can appear. Those can change the entire behavior of these plates. This paper aims to investigate the free vibration characteristics of porous functionally graded (FG) plates resting on elastic foundations. The Young's modulus of the plate is assumed to vary continuously through the thickness according to a power-law formulation, and the Poisson ratio is held constant. Different types of porosity distribution rates are considered. To examine the accuracy of the present formulation, several comparison studies are investigated. Effects of variation of porosity distribution rate, foundation parameter, power-law index and thickness ratio on the fundamental frequency of plates have been investigated.

Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory

  • Mouaici, Fethi;Benyoucef, Samir;Atmane, Hassen Ait;Tounsi, Abdelouahed
    • Wind and Structures
    • /
    • v.22 no.4
    • /
    • pp.429-454
    • /
    • 2016
  • In this paper, a shear deformation plate theory based on neutral surface position is developed for free vibration analysis of functionally graded material (FGM) plates. The material properties of the FGM plates are assumed to vary through the thickness of the plate by a simple power-law distribution in terms of the volume fractions of the constituents. During manufacture, defects such as porosities can appear. It is therefore necessary to consider the vibration behavior of FG plates having porosities in this investigation. The proposed theory is based on assumption that the in-plane and transverse displacements consist of bending and shear components, in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The neutral surface position for a functionally graded plate which its material properties vary in the thickness direction is determined. The equation of motion for FG rectangular plates is obtained through Hamilton's principle. The closed form solutions are obtained by using Navier technique, and then fundamental frequencies are found by solving the results of eigenvalue problems. Numerical results are presented and the influences of the volume fraction index and porosity volume fraction on frequencies of FGM plates are clearly discussed.

A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates

  • Elmossouess, Bouchra;Kebdani, Said;Bouiadjra, Mohamed Bachir;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.401-415
    • /
    • 2017
  • A new higher shear deformation theory (HSDT) is presented for the thermal buckling behavior of functionally graded (FG) sandwich plates. It uses only four unknowns, which is even less than the first shear deformation theory (FSDT) and the conventional HSDTs. The theory considers a hyperbolic variation of transverse shear stress, respects the traction free boundary conditions and contrary to the conventional HSDTs, the present one presents a new displacement field which includes undetermined integral terms. Material characteristics and thermal expansion coefficient of the sandwich plate faces are considered to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are supposed as uniform, linear and non-linear temperature rises within the thickness direction. An energy based variational principle is used to derive the governing equations as an eigenvalue problem. The validation of the present work is carried out with the available results in the literature. Numerical results are presented to demonstrate the influences of variations of volume fraction index, length-thickness ratio, loading type and functionally graded layers thickness on nondimensional thermal buckling loads.

Wave propagation analysis of carbon nanotubes reinforced composite plates

  • Mohammad Hosseini;Parisa Chahargonbadizade;Mohammadreza Mofidi
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.335-354
    • /
    • 2023
  • In this study, analysis of wave propagation characteristics for functionally graded carbon nanotube-reinforced composite (FG-CNTRC) nanoplates is performed using first-order shear deformation theory (FSDT) and nonlocal strain gradient theory. Uniform distribution (UD) and three types of functionally graded distributions of carbon nanotubes (CNTs) are assumed. The effective mechanical properties of the FG-CNTRC nanoplate are assumed to vary continuously in the thickness direction and are approximated based on the rule of mixture. Also, the governing equations of motion are derived via the extended Hamilton's principle. In numerical examples, the effects of nonlocal parameter, wavenumber, angle of wave propagation, volume fractions, and carbon nanotube distributions on the wave propagation characteristics of the FG-CNTRC nanoplate are studied. As represented in the results, it is clear that the internal length-scale parameter has a remarkable effect on the wave propagation characteristics resulting in significant changes in phase velocity and natural frequency. Furthermore, it is observed that the strain gradient theory yields a higher phase velocity and frequency compared to those obtained by the nonlocal strain gradient theory and classic theory.

Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube

  • Moradi-Dastjerdi, Rasool;Momeni-Khabisi, Hamed
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.277-299
    • /
    • 2016
  • In this paper, free vibration, forced vibration, resonance and stress wave propagation behavior in nanocomposite plates reinforced by wavy carbon nanotube (CNT) are studied by a mesh-free method based on first order shear deformation theory (FSDT). The plates are resting on Winkler-Pasternak elastic foundation and subjected to periodic or impact loading. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. In the mesh-free analysis, moving least squares (MLS) shape functions are used for approximation of displacement field in the weak form of motion equation and the transformation method is used for imposition of essential boundary conditions. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of elastic foundation coefficients, plate thickness and time depended loading are examined on the vibrational and stresses wave propagation responses of the nanocomposite plates reinforced by wavy CNT.

Nonlinear resonances of nonlocal strain gradient nanoplates made of functionally graded materials considering geometric imperfection

  • Jia-Qin Xu;Gui-Lin She;Yin-Ping Li;Lei-Lei Gan
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.795-811
    • /
    • 2023
  • When studying the resonance problem of nanoplates, the existing papers do not consider the influences of geometric nonlinearity and initial geometric imperfection, so this paper is to fill this gap. In this paper, based on the nonlocal strain gradient theory (NSGT), the nonlinear resonances of functionally graded (FG) nanoplates with initial geometric imperfection under different boundary conditions are established. In order to consider the small size effect of plates, nonlocal parameters and strain gradient parameters are introduced to expand the assumptions of the first-order shear deformation theory. Subsequently, the equations of motion are derived using the Euler-Lagrange principle and solved with the help of perturbation method. In addition, the effects of initial geometrical imperfection, functionally graded index, strain gradient parameter, nonlocal parameter and porosity on the nonlinear forced vibration behavior of nanoplates under different boundary conditions are discussed.