• Title/Summary/Keyword: Functionalized macrocycles

Search Result 1, Processing Time 0.018 seconds

Synthesis and Properties of Tetraaza Macrocycles Containing Two 3-Pyridylmethyl, 4-Pyridylmethyl, or Phenylmethyl Pendant Arms and Their Nickel(Ⅱ) and Copper(Ⅱ) Complexes: Effects of the Pendant Arms on the Complex Formation Reaction

  • Kang, Shin-Geol;Kim, Seong-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.269-273
    • /
    • 2003
  • The synthesis and properties of 2,13-bis(3'-pyridylmethyl) $(L^3)$, 2,13-bis(4'-pyridylmethyl) $(L^4)$, and 2,13-bis(phenylmethyl) $(L^5)$ derivatives of 5,16-dimethyl-2,6,13,17-tetraazatrcyclo$[16.4.0.^{1.18}0^{7.12}]$docosane are reported. The 3- or 4-pyridylmethyl groups of $[ML^3](ClO_4)_2\;or\;[ML^4](ClO_4)_2$ (M = Ni(Ⅱ) or Cu(Ⅱ)) are not involved in coordination, and the coordination geometry (square-planar) and ligand field strength of the complexes are quite similar to those of $[ML^5](ClO_4)_2$, bearing two phenylmethyl pendant arms. However, the complex formation reactions of $L^3\;and\;L^4$ are strongly influenced by the pyridyl groups, which can interact with a proton or metal ion outside the macrocyclic ring. The macrocycle $L^5$ exhibits a high copper(Ⅱ) ion selectivity against nickel(Ⅱ) ion; the ligand readily reacts with copper(Ⅱ) ion to form $[CuL^5]^{2+}$ but does not react with hydrated nickel(Ⅱ) ion in methanol solutions. On the other hand, $L^3\;and\;L^4$ form their copper(Ⅱ) and nickel(Ⅱ) complexes under a similar condition, without showing any considerable metal ion selectivity. The ligands $L^3\;and\;L^4$ react with copper(Ⅱ) ion more rapidly than does $L^5$ at pH 6.4. At pH 5.0, however, the reaction rate of the former macrocycles is slower than that of the latter. The effects of the 3- or 4-pyridylmethyl pendant arms on the complex formation reaction of $L^3\;and\;L^4$ are discussed.