• 제목/요약/키워드: Functional resin

검색결과 231건 처리시간 0.029초

설폰산형 비드와 섬유 혼성체를 이용한 도금수세수 중의 니켈 흡착 특성 (Adsorption Properties of Nickel ion from Plating Rinse Water Using Hybrid Sulfonated Bead and Fibrous Ion Exchanger)

  • 황택성;조상연
    • 폴리머
    • /
    • 제27권1호
    • /
    • pp.61-68
    • /
    • 2003
  • 본 연구에서는 도금폐수 중 니켈이온의 분리 회수를 위한 혼성 이온교환체의 제조 및 흡착 특성을 확인하였다. 니켈 흡착량은 이온교환체의 혼합비에 큰 영향이 없었으며, 비드상 이온교환수지 양이 증가할수록 증가하였다. 또한 Langmuir와 Freundlich흡착 등온식이 직선성을 보였으며 이로부터 니켈의 이온교환 친화력이 큰 것을 확인하였다. 또한 충전방식에 따른 압력손실은 다단충전법에서 적층수가 많아질수록 작아졌고, 혼합충전법에서는 비드 이온교환수지의 양이 증가할수록 압력손실은 감소하였다. 한편, 연속식 흡착실험 결과 다단충전방식의 경우 적층수가 증가할수록 초기 파괴 시간은 짧아졌으며, 최종 파괴 시간은 거의 동일한 것으로 나타났다. 반면, 혼합충전방식의 경우 이온교환섬유의 양이 증가할수록 흡착파괴 시간이 짧았으며, 이때 최대 흡착량은 각각 2.51 meq/g과 2.69 meq/g이었다. 한편, 모든 이온 교환체의 흡착된 니켈이온의 탈착은 10분 이내에 98% 이상 탈착되었다.

코팅제의 가교 밀도에 따른 고무와 코팅원단의 물성 변화 (Properties of Rubbers and Coated Fabrics according to Different Cross-linking Density of Coating Agent)

  • 김수홍;성기석;백두현
    • 한국염색가공학회지
    • /
    • 제35권1호
    • /
    • pp.8-19
    • /
    • 2023
  • Silicone rubber is widely used in most industries due to diverse advantages like heat stability, UV stability, durability, chemical resistance, environment friendliness, inertness and so on. But there is limitation to expand applications due to relatively weak rubber strengths such as tensile strength and tear strength, especially in fabric coating applications. The purpose of this study is to find influence of coating agent on performances of rubber and coated fabrics and their correlation according to different crosslinking densities of silicone rubbers. Addition cure type of silicones were formulated using crosslinked MQ-type silicone resin consisting of M (R3SiO1/2) and Q (SiO4/2) and linear polymers. Raw materials used were; 1) linear vinyl endblocked polymers and vinyl functional MQ resin as main polymers, 2) linear silicone hydride polymers as crosslinkers, 3) platinum catalyst and 4) inhibitor to control curing speed. Rubber specimens were prepared to check mechanical strength using universal testing machine (UTM). Crosslinking density was calculated using Flory-Rhener equation using solvent swelling method. Differential scanning calorimetry (DSC) and scanning electron microscope (SEM-EDS) were used to characterize rubbers. Consequently, it was found that physical properties of silicone rubbers and coated fabrics can be expected by crosslinking density of rubbers. Silicone rubber formulations that contain 20 ~ 30 wt% of vinyl MQ resin showed strongest balanced performances.

Development of High Functional Black Resin Coated Electrogalvanized Steel Sheet for Digital TV Panel

  • Jo, Du-Hwan;Kwon, Moonjae;Lee, Jae-Hwa;Kang, Hee-Seung;Jung, Yong-Gyun;Song, Yon-Kyun;Jung, Min-Hwan;Cho, Soo-Hyoun;Cho, Yeong-Bong;Cho, Myoung-Rae;Cho, Byoung-Chon;Lim, Kwangsoo;Seon, Pan-Woo;Han, Hyeon-Soop;Jeong, Hwon-Woo;Lee, Jae-Ryung;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • 제12권1호
    • /
    • pp.1-6
    • /
    • 2013
  • Recently Digital TV industry has drastically been moving the illuminating system, which causes an obvious product change from PDP and LCD to LED model to provide high-definition image. Due to strong competition in the digital industry, TV manufacturers make a great efforts to reduce production cost by using low-priced materials such as steels instead of aluminum and plastic etc. In this paper we have developed a new low-priced electrogalvanized steel sheet, which has a black resin composite layer, to substitute conventional high-priced PCM steel and plastic mold for rear cover panel in the digital TV. The black resin composite was prepared by mechanical dispersion of the mixture solution that consists of high solid polyester resin, melamine hardener, black pigment, micronized silica paste, polyacrylate texturing particle and miscellaneous additives. The composite solution was coated on the steel sheet using roll coater followed by induction furnace curing and cooling. Although the coated layer has a half thickness compared to the conventional PCM steels having $23{\mu}m$ thickness, it exhibits excellent quality for the usage of rear cover panel. The new steel sheet was applied to test products to get quality certification from worldwide electronic appliance customers. Detailed discussion provides in this paper including preparation of composite solution, roll coating technology, induction curing technology and quality evaluation from customers.

키토산 처리한 폴리에스테르 편평사 직물의 고기능화 가공에 관한 연구 (A Study on the High Functional Finishing of Polyester Flat Fabrics Treated with Chitosan)

  • 이석영;박성우;김삼수
    • 한국염색가공학회지
    • /
    • 제16권3호
    • /
    • pp.22-30
    • /
    • 2004
  • The polyester fabrics were treated with the chitosan with various solubility in optimized treatment condition. The treatment method was discussed to be a high functional finishing for the polyester fabric to obtain the high moisture absorption and anti-microorganism property by evaluating the effect of the chitosan purification method on the yield and anti-microorganism property of the chitosan. On the other hand, soluble polyurethane was added to the chitosan treatment solution and/or plasma pretreatment was done. The addition of soluble polyurethane give a high add-on ratio as well as a linen like effect of treated polyester fabric. The results were as follows: 1. In the treatment of polyester fabric by the chitosan solution, a soluble PU resin and low temperature plasma treatment were done to obtain high binding force between the fabrics and the chitosan. The add-on rate and the moisture absorption ratio of the fabrics treated with the chitosan-PU after treated with the plasma slightly increased more than those of the fabrics treated with the chitosan only. 2. Anti-static property of the fabrics treated with the chitosan decreased rapidly with increasing of the chitosan concentration. The washing fastness of the fabrics treated with the chitosan-PU after treated with the plasma was better than those of the fabrics treated with chitosan only. The wrinkle resistance of the treated fabrics decreased constantly with the concentration of the chitosan. The bending rigidity of the treated fabrics increased greatly. On the treatment of polyester fabric under optimum condition, the microorganism reduction rate kept above 90% after 10times launderings. 3. As the polyester fabrics which has flat yam was used as a weft yams were treated with the chitosan-PU as give a functional finishing effects such as durability, moisture absorption, anti-static and anti- microorganism property. Treated polyester fabric showed a good functional finishing effect and a linen like property.

폴리이미드 표면개질과 에폭시접착제 개질을 통한 폴리이미드/에폭시의 접착력 향상 (Improvement of Polyimide/Epoxy Adhesion Strength from the Modification of Polyimide Surface and Epoxy Adhesive)

  • 김성훈;이동우;정경호
    • 한국재료학회지
    • /
    • 제9권1호
    • /
    • pp.65-72
    • /
    • 1999
  • In order to minimize flexible printed circuit(FPC), which is used in computer, communication, medical facility, aviation space industry, it is required to improve the interfacial adhesion of polymide/epoxy or polyimide/polyimide consists of FPC. In this study, it was considered to improve the adhesion strength of polyimide/epoxy joint by introducing functional group on polyimide film and improving mechanical property of epoxy. Functional group on polyimide film was introduced by changing polyimide film surface to polyamic acid in KOH aqueous solution. The optimum conditions for surface modification were the concentration of 1M KOH and treatment time of 5min. Also, the optimum adhesion strength of polyimide/epoxy joint was obtained using rubber modified epoxy and polyamic acid as a base resin and curing agent of epoxy adhesive, respectively. The degree of surface modification of polyimide film examined with contact angle measurement of FTIR, thus modification of polyimide to polyamic acid was identified. Fracture surface of plymide/epoxy joint was analyzed by scanning electron microscopy, and modified polyamic acid reimidezed to polymide as increasing curing temperature.

  • PDF

Additive Process Using Femto-second Laser for Manufacturing Three-dimensional Nano/Micro-structures

  • Yang, Dong-Yol;Lim, Tae-Woo;Son, Yong;Kong, Hong-Jin;Lee, Kwang-Sup;Kim, Dong-Pyo;Park, Sang-Hu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권4호
    • /
    • pp.63-69
    • /
    • 2007
  • The two-photon stereolithography (TPS) process is a promising technique for the fabrication of real three-dimensional (3D) nano/micro-structures via application of a femto-second laser, In TPS, when a near-infrared ultrashort-pulsed laser is closely focused onto a confined volume of photocurable resin, only the local area at the center of the focus is cured. Therefore, real 3D microstructures with resolution under the diffraction limit can be fabricated through a layer-by-layer accumulative technique, This process provides opportunities to develop neo-conceptive nano/micro devices in IT/BT industries, However, a number of issues, including development of effective fabrication methods, highly sensitive and functional materials, and neo-conceptive devices using TPS, must be addressed for the realization of industrial application of TPS. In this review article, we discuss our efforts related to TPS: effective fabrication methods, diverse two-photon curable materials for high functional devices, and applications.

X-ray Photoelectron Spectroscopic Analysis of Modified MWCNT and Dynamic Mechanical Properties of E-beam Cured Epoxy Resins with the MWCNT

  • Lee, Young-Seak;Im, Ji-Sun;Yun, Seok-Min;Nho, Young-Chang;Kang, Phil-Hyun;Jin, Hang-Kyo
    • Carbon letters
    • /
    • 제10권4호
    • /
    • pp.314-319
    • /
    • 2009
  • The surface treatment effects of reinforcement filler were investigated based on the dynamic mechanical properties of mutiwalled carbon nanotubes (MWCNTs)/epoxy composites. The as-received MWCNTs(R-MWCNTs) were chemically modified by direct oxyfluorination method to improve the dispersibility and adhesiveness with epoxy resins in composite system. In order to investigate the induced functional groups on MWCNTs during oxyfluorination, X-ray photoelectron spectroscopy was used. The thermo-mechanical property of MWCNTs/epoxy composite was also measured based on effects of oxyfluorination treatment of MWCNTs. The storage modulus of MWCNTs/epoxy composite was enhanced about 1.27 times through oxyfluorination of MWCNTs fillers at $25^{\circ}C$. The storage modulus of oxyfluorinated MWCNTs (OF73-MWCNTs) reinforced epoxy composite was much higher than that of R-MWCNTs/epoxy composite. It revealed that oxygen content led to the efficient carbon-fluorine covalent bonding during oxyfluorination. These functional groups on surface modified MWCNTs induced by oxyfluorination strikingly made an important role for the reinforced epoxy composite.

CBN분말상에 석출형상 제어를 위한 무전해 기능성 니켈합금도금에 관한 연구 (A Study on the Functional Electroless Ni Plating for Controled Morphology on the CBN Powder)

  • 추현식;김동규
    • 한국표면공학회지
    • /
    • 제41권6호
    • /
    • pp.312-324
    • /
    • 2008
  • In this study, the functional property as a super abrasive material was secured for CBN powder by the electroless Ni-P plating on the surface of the particle. The plating solution has been prepared to control the surface morphology by regulating surfactants and process conditions. The effects of processing parameters on the surface morphology of CBN powder was discussed. The results are summarized as follows; A stable plating tendency was achieved from 1 hour after quantitatively dropping reducing agent. It was observed that more than 50% of the weight gain was obtained by Ni-P coating on the surface of CBN super abrasive powder. The morphology of the Ni-P coating layer is consisted of botryoidal and spiky type and it could be controlled by regulating processing parameters. Superior characteristic in terms of surface morphology was found in the nonionic surfactant XL-80N. It was found that XL-80N considerably decreased surface tension of CBN powder and Ni-P alloy surface then enhance wettability as well as plating rate. Metal coated CBN powder as a raw material of resin bond wheel has been developed through this investigation.

다기능성 멀칭지의 개발 및 적용성 평가(제3보) -시제품 생상시 공정 백수의 거품제거 처리 및 그 영향에 관하여- (Development of Multi-functional Mulch Papers and Evaluation of Their Performance(Part 3) -Defoaming Treatment during Trial Production of Mulch Papers and Their Influence on Wet End System-)

  • 이학래;이진희
    • 펄프종이기술
    • /
    • 제32권3호
    • /
    • pp.25-31
    • /
    • 2000
  • It is required to use substantial amount of wet strength resin for producing multi-functional mulch papers since these paper products shold maintain its strength properties when they exposed to outdoor weather for several months. While producing mulch papers it is usual to observe significant amount of foam at white water silo. Thus it is imperative to use defoaming or antifoaming agents. In this study diverse defoaming and antifoaming agents have been tested for their effective-ness in eliminating foams that produced. It was shown that combined use of a silicone type defoamer and a fatty acid type anti-foaming agent was msot effective in eliminating foams. These chemicals were used in trial production of mulch papers and their influence on paper-making wet end system was examined including one pass retention cationic demand con-ductivity pH etc. It was found that the defoaming agents were very effective for removing foams in trial production. Tensile strengths of the mulch papers produced were significantly greater than commericial mulch papers produced in Japan.

  • PDF

아로마틱 고분자를 적용한 기능성 PET 가공사 제조 및 특성 (Preparation and Properties of Functional PET Textured Yarn Coated with Aromatic Polymer)

  • 안다정;최철훈;이재웅;이상오
    • 한국염색가공학회지
    • /
    • 제29권3호
    • /
    • pp.148-154
    • /
    • 2017
  • Many researches have been made on the processing technology of Poly(ethylene terephthalate) (PET), which is widely used for clothing and non-clothing applications. In this study, we coated PET filaments with m-aramid resin to improve heat resistance and antimicrobial properties. In order to enhance adhesion between PET and m-aramid polymer, the adhesive polymer was coated on the PET filaments using a winding speed of 100m/min and then treated with m-aramid. Scanning electron microscopy was used to analyze the surface of the adhesive polymer and m-aramid treated PET filament. The change of initial degradation temperature according to treatment was confirmed by thermogravimetric analysis. Antimicrobial activity analysis using bacterial reduction method showed that PET filament treated with adhesive polymer and m-aramid had an increased antibacterial effect compared to untreated PET filament.