• Title/Summary/Keyword: Functional polymer

Search Result 785, Processing Time 0.028 seconds

The Study of Water Stability of MDF Cement Composite by Addition of Silane Coupling Agent (Silane Coupling Agent 첨가에 의한 MDF Cement Composite의 수분안정성 연구)

  • 노준석;김진태;박춘근;오복진;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.421-428
    • /
    • 1998
  • The effect of silane coupling agents on the water stability of HAC/PVA based MDF cement composites which were modified with urethane and epoxy resin were studied as a function of the functional groups and addition amount of silane coupling agent. According to the composition of polymer matrix the silanes with different functional groups showed the different effectiveness. In case of the only PVA matrix the silane with vinyl functional group was more effective than other silanes. When the epoxy resin was added the silane of epoxy-methodxy group enhanced the flexural strength of dry and wet state more than other. In case of urethane-added MDF cement the silane of diamine group was effective and enhanced the water sta-bility fo MDF cement composite more and more as the addition amount of silane increased, Especially in case of warm-presed composite the effect of silane was enhanced By addition of 2wt% of silane with 야-amine group the flexural strength of urethane-added composites were enhanced by 20% more in dry state 40-70% in wet state in accord with the porosity analysis. The flexural strength of the poxy resin-added MDF cement composite was increased by addition of 1wt% and 2wt% silane of epoxy-methoxy group However the addition of 4wt% of silane decreased the flexural strength of dry and wet state by formation of closed pore in the polymer matrix.

  • PDF

D-$\Pi$-A designed dye chromophores and nanoparticles: optical properties, chemosensor effects and PE/Aramid fiber colorations

  • Son, Young-A;Kim, Su-Ho;Kim, Young-Sung
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2010.03a
    • /
    • pp.40-40
    • /
    • 2010
  • Studies on attractive color changing property of dye chromophore and fluorophore have been greatly enjoyed in the related industrial and research fields such as optoelectronics, chemosensor, biosensor and so on. The optical property based on D-$\Pi$-A intramolecular charge transfer (ICT) system of chromophore molecules can be utilized as suitable sensing probes for checking media polarity and determining colorimetric chemosensing effect, especially heavy metal detection. These finding are obtained by absorption and emission properties. In this work, donor-acceptor D-$\Pi$-A type fluorescent dyes were designed and synthesized with the corresponding donor and acceptor groups. The selected donor moieties might be provided prominent amorphous properties which are very useful in designing and synthesizing functional polymers and in fabricating devices. Another reasons to choose are commercial availabilities in high purity and low price. Donor-bridge-acceptor (D-A) type dyes can produce impressive optical-physical properties, yielding them potentially suitable for applications in the synthesis of small functional organic molecules. Small organic functional molecules have unique advantages, such as better solubility, amorphous character, and represent an area of research which needs to be explored and developed. Currently, their applications in metalorganic compounds is rapidly expanding and becoming widespread in self-assembly processes, photoluminescence applications, chiral organocatalysts, and ingrafts with nanomaterials. Colloidal nanoparticles have received great attentions in recent years. The photophysical properties of nanoparticles, particularly in terms of brightness, photostability, emission color purity and broad adsorption range, are very attractive functions in many applications. To our knowledge background, colloidal nanoparticles have been enjoyed their applications in bio-probe research fields. This research interest can be raised by the advantages of the materials such as high photoluminescence quantum yields, sharp emission band, long-term photostability and broad excitation spectra. In recent, the uses of nanoparticles being embedded in a polymer matrix and binded on polymer surface have been explored and their properties such as photo-activation and strong photoluminescence have been proposed. The prepared chromophores and nanoparticles were investigated with absorption and emission properties, solvatochromic behaviors, pH induced color switching effects, chemosensing effects and HOMO/LUMO energy potentials with computer simulation. In addition, synthesized fluorophore dyes and particles were applied onto PE/Aramid fiber fluorescing colorations. And the related details were then discussed.

  • PDF

Polymerization and Preparation of Functional Ophthalmic Material Containing Carbon Nanoparticles

  • Lee, Min-Jae;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.452-458
    • /
    • 2018
  • This research is conducted to create a functional hydrogel ophthalmic lens containing nanoparticles. Carbon nanoparticles and PEGMEMA are used as additives for the basic combination of HEMA, MA, and MMA, and the materials are copolymerized with EGDMA as the cross-linking agent and AIBN as the thermal initiator. The hydrogel lens is produced using a cast-mold method, and the materials are thermally polymerized at $100^{\circ}C$ for an hour. The polymerized lens sample is hydrated in a 0.9 % saline solution for 24 hours before the optical and physical characteristics of the lens are measured. The refractive index, water content, contact angle, light transmittance, and tensile strength are measured to evaluate the physical and optical characteristics of the hydrogel lens. The refractive index, water content, contact angle, UV-B light transmittance, UV-A light transmittance, visible light transmittance, tensile strength and breaking strength of the hydrogel lens polymer are 1.4019~1.4281, 43.05~51.18 %, $31.95{\sim}68.61^{\circ}$, 21.69~58.11 %, 35.59~84.26 %, 45.85~88.06 %, 0.1075~0.1649 kgf and 0.1520~0.2250 kgf, respectively. The results demonstrate an increase in refractive index, tensile strength and breaking strength and a decrease in contact angle and light transmittance. Furthermore, the visible light transmissibility is significantly increased at PEG 10 %. It is clear that this material can be used for high-performance ophthalmic lenses with wettability, ultraviolet ray blocking effect, and tensile strength.

Additive Process Using Femto-second Laser for Manufacturing Three-dimensional Nano/Micro-structures

  • Yang, Dong-Yol;Lim, Tae-Woo;Son, Yong;Kong, Hong-Jin;Lee, Kwang-Sup;Kim, Dong-Pyo;Park, Sang-Hu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.63-69
    • /
    • 2007
  • The two-photon stereolithography (TPS) process is a promising technique for the fabrication of real three-dimensional (3D) nano/micro-structures via application of a femto-second laser, In TPS, when a near-infrared ultrashort-pulsed laser is closely focused onto a confined volume of photocurable resin, only the local area at the center of the focus is cured. Therefore, real 3D microstructures with resolution under the diffraction limit can be fabricated through a layer-by-layer accumulative technique, This process provides opportunities to develop neo-conceptive nano/micro devices in IT/BT industries, However, a number of issues, including development of effective fabrication methods, highly sensitive and functional materials, and neo-conceptive devices using TPS, must be addressed for the realization of industrial application of TPS. In this review article, we discuss our efforts related to TPS: effective fabrication methods, diverse two-photon curable materials for high functional devices, and applications.

Preparation and Performance Analysis of Ophthalmic Polymer Using SWCNT and SWCCNT

  • Shin, Su-Mi;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.735-740
    • /
    • 2019
  • The purpose of this study is to fabricate an ophthalmic lens by copolymerizing two types of carbon nanotubes and hydrophilic hydrogel lens materials, and to investigate its application as an ophthalmic lens material by analyzing its physical properties and antimicrobial effect. For polymerization, HEMA (2-hydroxyethyl methacrylate), EGDMA (ethylene glycol dimethacrylate), a crosslinking agent, and AIBN (azobisisobutyronitrile), an initiator, are used as a basic combination, and a single-walled carbon nanotube and a single-walled, carboxylic-acid-functionalized carbon nanotube are used as additives. To analyze the physical properties, the water content, refractive index, breaking strength, and antimicrobial effect of the fabricated lenses are measured. The fabricated lenses satisfies all the basic properties of the basic hydrogel ophthalmic lens. The water content increases with increasing amount of additive and decreases with addition of 0.2 % ratio of nanoparticles. The refractive index is inversely proportional to the water content result. As a result of the antimicrobial test of the fabricated lens, the addition of carbon nanotubes shows an excellent antimicrobial effect. Therefore, it is considered that the fabricated lens can be applied as a functional material for basic ophthalmic hydrogel lenses.

Research about Chemical-Biological Protection Capability of Selectively Permeable Membrane Materials Based on Polyvinyl Alcohol (폴리비닐알코올 기반 선택투과막 재료의 화생방호성능 연구)

  • Kang, Jae-Sung;Seo, Hyeon-Kwan;Kwon, Tae-Geun;Park, Hyen-Bae;Lee, Hae-Wan
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.237-244
    • /
    • 2013
  • We fabricated several composite membranes with selectively permeable performance designed to facilitate water vapor transport and resist DMMP vapor permeation. Materials for selective permeable membrane were based on polyvinyl alcohol and functional polymer containing basic functional group. With these materials, we characterized selectively permeable performance to identify next-generation material with chemical-biological protective capability. Results showed that polyvinyl alcohol (PVA)/polyethyleneimine (PEI) materials possessed performance with superior water vapor permeation ($2,200{\sim}2,900g/m^2/day$) and protective capability against DMMP vapor ($47g/m^2/day$).

Utilization of Metasequoia(Metasequoia glyptostroboides) Cone as a New Natural Dye Resource(3): Dyeing Properties and Antimicrobial Functionality of Wool Fiber (새로운 천연염재로서 메타쉐콰이어 열매의 활용(3): 모섬유의 염색성과 항균성을 중심으로)

  • Yan, Jun;Yoo, Dong Il;Shin, Younsook
    • Textile Coloration and Finishing
    • /
    • v.30 no.3
    • /
    • pp.208-215
    • /
    • 2018
  • The objective was to investigate the efficacy of Metasequoia(Metasequoia glyptostroboides) cone colorants as a new functional dye for wool fiber. Effects of dyeing conditions and mordanting on dye uptake, color change, and colorfastness were investigated for wool fiber. Compared with cotton and silk fibers, wool fiber showed better affinity for the Metasequoia cone colorants. Fe and Cu mordants improved dye uptake, and mordanting did not change the color of dyed fabric with YR Munsell color. Colorfastness to rubbing and washing was as good as grade 4, whereas lightfastness of the dyed fabrics was above grade 3. Antimicrobial activity of the colorants was very high 99.3% of reduction rate toward S. aureus. It was confirmed that Metasequoia cone colorants can be utilized as a new functional natural dye for wool fiber. In addition, considering its high antimicrobial functionality it could be applied to cosmetics and food.

A 3D bioprinting system and plasma-surface modification to fabricate tissue engineering scaffolds (조직공학용 세포담체 제작을 위한 플라즈마-표면개질이 포함된 바이오프린팅 시스템)

  • Kim, Geun-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.3-23
    • /
    • 2017
  • The achievement of tissue engineering can be highly depending on the capability to generate complicated, cell seeded three dimensional (3D) micro/nano-structures. So, various fabrication techniques that can be used to precisely design the architecture and topography of scaffolding materials will signify a key aspect of multi-functional tissue engineering. Previous methods for obtaining scaffolds based on top-down are often not satisfactory to produce complex micro/nano-structures due to the lack of control on scaffold architecture, porosity, and cellular interactions. However, a bioprinting method can be used to design sophisticated 3D tissue scaffolds that can be engineered to mimic the tissue architecture using computer aided approach. Also, in recent, the method has been modified and optimized to fabricate scaffolds using various natural biopolymers (collagen, alginate, and chitosan etc.). Variation of the topological structure and polymer concentration allowed tailoring the physical and biological properties of the scaffolds. In this presentation, the 3D bioprinting supplemented with a newly designed plasma treatment for attaining highly bioactive and functional scaffolds for tissue engineering applications will be introduced. Moreover, various in vivo and in vitro results will show that the fabricated scaffolds can carry out their structural and biological functionality.

  • PDF

Pretreatment Process for Production of the Gromwell Colorants Powder (자초 분말 염료 제조를 위한 전처리 공정 연구)

  • Choi, Min;Yoo, Dong-Il;Shin, Youn-Sook
    • Textile Coloration and Finishing
    • /
    • v.24 no.1
    • /
    • pp.18-26
    • /
    • 2012
  • In this work, colorants extraction process from gromwell was studied for making powder form of colorants by solving the high viscosity problem of gromwell extracts. In order to do that, sugar extracted together with colorants must be pre-extracted. For sugar decomposition, gromwell roots were pretreated with various enzyme solutions. The total sugar content of pre-extract with enzyme solution was measured. Accordingly, the effects of enzyme type and pretreatment condition on sugar decomposition were investigated to find appropriate enzyme(amylase, hemicellulase, pectinase) and enzyme activity (100~1000unit), pre-extracted time(3~24hr). Color characteristics and dye uptake of dyed fabrics were evaluated. Gromwell colorants were assessed for their potential antimicrobial activities, which possibly expand their end use as functional pigments. The efficiency of removing sugar was increased in the order of hemicellulase, pectinase, amylase, $H_2O$. Gromwell colorants powder yield was in the range of 4.4% to 9.8% depending on pretreatment enzyme. Gromwell colorants produced RP color on the silk and wool fabrics with good dye uptake. Antimicrobial activity of gromwell colorants will greatly increase its potentiality for applying as functional natural colorants in the future.

Synthesis and Polymerization of Methacryloyl-PEG-Sulfonic Acid as a Functional Macromer for Biocompatible Polymeric Surfaces

  • Kim, Jun-Guk;Sim, Sang-Jun;Kim, Ji-Heung;Kim, Soo-Hyun;Kim, Young-Ha
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.379-383
    • /
    • 2004
  • Poly(ethylene glycol)s (PEGs) are unique in their material properties, such as biocompatibility, non-toxicity, and water-solublizing ability, which are extremely useful for a variety of biomedical applications. In addition, a variety of functional PEGs with specific functionality at one or both chain ends have been synthesized for many specialized applications. Surface modifications using PEG have been demonstrated to decrease protein adsorption and platelet or cell adhesion on biomaterials. Furthermore, PEGs having anionic sulfonate terminal units have been proven to enhance the blood compatibility of materials, which has been demonstrated by the negative cilia concept. The preparation of telechelic PEGs having a sulfonic acid group at one end and a polymerizable methacryloyl group at the other is an interesting undertaking for providing macromers that can be used in various vinyl copolymerization and gel systems. In this paper, preliminary results on the synthesis and polymerization behavior of a novel PEG macromer is described with the aim of identifying a biocompatible material for applications in various blood-contacting devices.