• Title/Summary/Keyword: Functional group of oxygen

Search Result 145, Processing Time 0.024 seconds

Photocyclization Reactions of ($\omega$-Phthalimidoalkoxy)acetic Acids via Sequential Single Electron Transfer-Decarboxylation Pathways

  • Yoon, Ung-Chan;Lee, Chan-Woo;Oh, Sun-Wha;Oh, Sun-Wha;Hyun Jin kim;Lee, Sang-Jin
    • Journal of Photoscience
    • /
    • v.7 no.4
    • /
    • pp.143-148
    • /
    • 2000
  • Studies have been conducted to explore single electron transfer(SET) promoted photocyclization of ($\omega$-phthalimidoalkoxy)acetic acids(alkoxy=ethoxy, n-propoxy and n-butyloxy). Photocyclizations occur in methanol or acetone in high yields to produce cyclized products in which phthalimide carbonyl carbon is bonded to the carbon of side chain in place of the carboxylic group. These photocyclizations are thought to proceed through pathways involving intramolecular SET from oxygen in the $\alpha$-carboxymethoxy groups to the singlet excited state phthalimide moieties followed by decarboxylation of the intermediate $\alpha$-carboxymethoxy cation fadicals and cyclizations by radical coupling. The photocyclizations occur ca. three times faster in both methanol or acetone with one equivalent of sodium hydroxide added to the reactions and occur slower in acetone than in methanol. The efficient and regiselective cyclization reactions observed for photolyses in methanol represent synthetically useful processes for construction of heterocyclic compounds.

  • PDF

TENSILE BOND STRENGTH OF ALUNMINA CORE TREATED BY ION ASSISTED REACTION (이온보조반응법으로 처리한 알루미나 코아의 인장결합강도에 관한 연구)

  • Kim, Hyeong-Seob;Woo, Yi-Hyung;Kwon, Kung-Rock;Choi, Boo-Byung;Choi, Won-Kook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.704-723
    • /
    • 2000
  • This study was undertaken to evaluate the tensile bond strength of In-Ceram alumina core treat-ed by ion assisted reaction(IAR). Ion assisted reaction is a prospective surface modification technique without damage by a keV low energy ion beam irradiation in reactive gas environments or reactive ion itself. 120 In-Ceram specimens were fabricated according to manufacturer's directions and divided into six groups by surface treatment methods of In-Ceram alumina core. SD group(control group): sandblasting SL group: sandblasting + silane treatment SC group: sandblasting + Siloc treatment IAR I group: sandblasting + Ion assisted reaction with argon ion and oxygen gas IAR II group: sandblasting + Ion assisted reaction with oxygen ion and oxygen gas IAR III group: sandblasting + Ion assisted reaction with oxygen ion only For measuring of tensile bond strength, pairs of specimens within a group were bonded with Panavia 21 resin cement using special device secured that the film thickness was $80{\mu}m$. The results of tensile strength were statistically analyzed with the SPSS release version 8.0 programs. Physical change like surface roughness of In-Ceram alumina core treated by ion assistad reaction was evaluated by Contact Angle Measurement, Scanning Electron Microscopy, Atomic Force Microscopy; chemical surface change was evaluated by X-ray Photoelectron Spectroscopy. The results as follows: 1. In tensile bond strength, there were no statistically significant differences with SC group, IAR groups and SL group except control group(P<0.05). 2. Contact angle measurement showed that wettability of In-Ceram alumina core was enhanced after IAR treatment. 3. SEM and AFM showed that surface roughness of In-Ceram alumina core was not changed after IAR treatment. 4. XPS showed that IAR treatment of In-Ceram alumina core was enabled to create a new functional layer. A keV IAR treatment of In-Ceram alumina core could enhanced tensile bond strength with resin cement. In the future, this ion assisted reaction may be used effectively in various dental materials as well as in In-Ceram to promote the bond strength to natural tooth structure.

  • PDF

NO gas sensing ability of activated carbon fibers modified by an electron beam for improvement in the surface functional group

  • Park, Mi-Seon;Lee, Sangmin;Jung, Min-Jung;Kim, Hyeong Gi;Lee, Young-Seak
    • Carbon letters
    • /
    • v.20
    • /
    • pp.19-25
    • /
    • 2016
  • Activated carbon fiber (ACF) surfaces are modified using an electron beam under different aqueous solutions to improve the NO gas sensitivity of a gas sensor based on ACFs. The oxygen functional group on the ACF surface is changed, resulting in an increase of the number of non-carbonyl (-C-O-C-) groups from 32.5% for pristine ACFs to 39.53% and 41.75% for ACFs treated with hydrogen peroxide and potassium hydroxide solutions, respectively. We discover that the NO gas sensitivity of the gas sensor fabricated using the modified ACFs as an electrode material is increased, although the specific surface area of the ACFs is decreased because of the recovery of their crystal structure. This is attributed to the static electric interaction between NO gas and the non-carbonyl groups introduced onto the ACF surfaces.

Characteristics of Spontaneous Combustion of Various Fuels for Coal-Fired Power Plant by Carbonization Rank

  • Kim, Jae-kwan;Park, Seok-un;Shin, Dong-ik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.83-92
    • /
    • 2019
  • Spontaneous combustion propensity of various coals of carbonization grade as a pulverized fuel of coal-fired power plant has been tested from an initial temperature of $25^{\circ}C$ to $600^{\circ}C$ by heating in an oven with air to analyze the self-oxidation starting temperature. These tests produce CPT (Cross Point Temperature), IT (Ignition temperature), and CPS (Cross Point Slope) calculated as the slope of time taken for a rapid exothermic oxidation reaction at CPT base. CPS shows a carbonization rank dependence whereby wood pellet has the highest propensity to spontaneous combustion of $20.995^{\circ}C/min$. A sub-bituminous KIDECO coal shows a CPS value of $15.370^{\circ}C/min$, whereas pet coke has the highest carbonization rank at $2.950^{\circ}C/min$. The nature of this trend is most likely attributable to a concentration of volatile matter and oxygen functional groups of coal surface that governs the available component for oxidation, as well as surface area of fuel char, and constant pressure molar heat.

Antioxidative Effectiveness of Phenolics on Linoleic Acid With Phenolics (페놀물질을 첨가한 Linoleic Acid의 항산화 효과측정)

  • 김정숙
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.3 no.2
    • /
    • pp.147-153
    • /
    • 1993
  • Phenolics as antioxidant were added to linoleic acid to prevent lipid oxidation. Antioxidative effectiveness of them was measured by peroxie value at each 24hour interval in order to compare with 0.02% protocatechuic acid(PRL) and phloroglucinol(PHL) in linloleic acid, contrast tube at 37$^{\circ}C$for 96 hours blowing oxygen into specimen. Perocide values of oxidized linoleic acid, PRL, PHL for 96 hours were 78, 42, 30, From that the effect is more clearly demonstrated by NMR rather than UV and that the effect was dependent on the functional group and geometric molecular structure of phenolics.

  • PDF

THE EFFECTS OF IRRADIATION AND HYPERBARIC OXYGEN THERAPY ON MICROVASCULAR ANASTOMOSIS (방사선조사 및 고압산소요법이 미세혈관 문합술에 미치는 영향)

  • Choi, Sung-Weon;Kim, Byung-Yong;Park, Jung-Hyun;Yoon, Jung-Hoon;Yook, Jong-In;Yoo, Jae-Ha;Lee, Eui-Woong;Cha, In-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.5
    • /
    • pp.455-461
    • /
    • 2000
  • Malignant tumors of the head and neck frequently require treatment with both radiotherapy and surgery. Reconstruction of the defect in previously irradiated field is a challenge to surgeon, who must produce both a functional and an esthetic result. Hyperbaric oxygen therapy(HBO) has been used in an attempt to reduce the deleterious effects of radiation. But the issue of whether prior irradiation and HBO of the recipient site of a free flap affects the result of reconstruction continues to generate controversy. So, the effects of irradiation and hypergbaric oxygen therapy on microvascular anastomosis was evaluated in an experimental study in femoral vessels of rats. The experimental groups were divided into 3 groups, contorol group, irradiation group, and irradiation and HBO group. Preoperative irradiation was delivered in the left groin field with single dose corresponding 2,000cGy and total 48 hours of HBO was given 100% oxygen at 2.4 atmosphere for 4 weeks. The femoral vessels of 60 rats were anastomosed after irradiation and HBO treatment. Three days, 1 week, 2 weeks and 4 weeks after surgery, the femoral vessels were evaluated for patency and histopathologic changes. There was no notable effect of irradiation on patency of femoral vessels in rats and the radiation effects were obvious on histological examination which showed the sloughing of the endothelial cells, subintimal hyperplasia and fibrosis on the media and adventitia of femoral arteries. The histologic changes of the femoral veins were mild and not typical. But the effects of hyperbaric oxygen therapy after irradiation was seen not marked difference in irradiation group.

  • PDF

A Study on the Plasma Treatment Effect of Metal Fibersusing Micromechanical Technique (미세역학적 실험법에 의한 금속섬유의 플라즈마 처리효과에 관한 연구)

  • MiYeon Kwon;Seung Goo Lee
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.122-129
    • /
    • 2022
  • In this study, the hydrophilicity of the metal fiber is improved by introducing an oxygen-containing functional group to the fiber surface after treatment of the metal fiber using the oxygen plasma treatment time as an experimental variable. For the surface modification of metal fibers, changes in surface properties before and after plasma treatment were observed using SEM and x-ray photoelectron spectroscopy (XPS). In order to observe the effect of the plasma treatment time on the surface of the metal fiber, the change in contact angle of the metal fiber with respect to a polar solvent and a non-polar solvent was measured. After calculating the change in surface free energy using the measured contact angle, the contact angle and the surface free energy for metal fibers before and after oxygen plasma treatment were compared, and the correlation with the adhesion work was also considered. The microdroplet specimens were prepared to investigate the effect of surface changes of these metal fibers on the improvement of shear strength at the interface when combined with other materials and the interfacial shear strength was measured, and the correlation with the adhesion work was also identified. Therefore, the oxygen plasma treatment of the metal fiber results in an increase in the physical surface area on the fiber surface and a change in contact angle and surface energy according to the introduction of the oxygen-containing functional group on the surface. This surface hydrophilization resulted in improving the interfacial shear strength with the polymer resin.

Silver elimination effect by sulfuric acid for Ag pre-treated activated carbon

  • Oh, Won-Chun
    • Analytical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.121-130
    • /
    • 2006
  • In this study, silver pre-treated activated carbons are transformed using sulfuric acid. From the results of adsorption, each isotherm shows a distinct knee band, which is characteristic of microporous adsorbents with capillary condensation in micropores. In order to reveal the causes of the differences in adsorption capacity and specific surface area after the samples were washed with various strengths of sulfuric acid, surface morphology and external pore structure were investigated by SEM. X-ray diffraction patterns indicated that Ag-activated carbons show better performance for silver and silver compounds removal by post-treatment with acid. The FT-IR spectra of silver-activated carbon samples show that the acid post-treatment was consequently associated with the removal of silver with an increased surface functional group containing oxygen of the activated carbon. The type and quality of oxygen groups are determined on the method proposed by Boehm. For the chemical composition microanalysis of silver-activated carbons transformed by post-treatment with sulfuric acid, samples were analyzed by EDX.

Shear Behavior of Plasma-treated Graphite/Epoxy Laminated Composites Using Oxygen Gas (산소 플라즈마로 표면처리된 탄소섬유/에폭시 적층복합재의 전단거동)

  • Kim, Min-Ho;Rhee, Kyong-Yop;Paik, Young-Nam;Jung, Dong-Ho;Kim, Hyeon-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.103-108
    • /
    • 2008
  • In-plane shear tests were performed to investigate the shear property change of FRP by plasma modification. Graphite/epoxy prepreg was used as a test material and plasma source was a microwave (2.4GHz) type. Plasma was induced by oxygen gas and its flow rate was kept $4{\sim}5$sccm with low vacuum state of $10^{-3}$ Torr. Prepreg was stacked unidirectionally ($[0^0]_8$) after plasma modification. Wettability was determined by measuring a contact angle. The results showed that the contact angle was decreased from $86^0$ to $45^0$ after plasma modification. Shear strength was also improved by ${\sim}10%$. SEM examination was made on the fracture surface and functional group produced by the plasma modification was investigated by XPS.

Optical Spectroscopic Analysis of Muscle Spasticity for Low-Level Laser Therapy (LLLT)

  • Lee, Yeon-Ui;Lee, Sang-Kwan;Youn, Jong-In
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.373-379
    • /
    • 2011
  • Current therapeutic methods for suppressing muscle spasticity are intensive functional training, surgery, or pharmacological interventions. However, these methods have not been fully supported by confirmed efficacy due to the aggravation of the muscle spasticity in some patients. In this study, a combined system was developed to treat with a low-level laser and to monitor the region of the treatment using an optical spectroscopic probe that measures oxygen saturation and deoxygenation during low-level laser therapy (LLLT). The evaluation of the wavelength dependence for LLLT was performed using a Monte Carlo simulation and the results showed that the greatest amount of heat generation was seen in the deep tissue at ${\lambda}$ = 830 nm. In the oxy- and deoxygenation measurements during and after the treatment, oxygen-Hb concentration was significantly increased in the laser-irradiated group when compared to the control group. These findings suggest that LLLT using ${\lambda}$ = 830 nm may be of benefit in accelerating recovery of muscle spasticity. The combined system that we have developed can monitor the physiological condition of muscle spasticity during the laser treatment in real time and may also be applied to various myotonia conditions such as muscle fatigue, back-pain treatment/monitoring, and ulcer due to paralysis.