• Title/Summary/Keyword: Functional gait

Search Result 354, Processing Time 0.027 seconds

The Relationship between the Plantar Center of Pressure Displacement and Dynamic Balance Measures in Hemiplegic Gait (편마비 보행 시 족저압력중심의 이동특성과 동적균형능력의 상관관계 연구)

  • Park, Ji-Won;Nam, Ki-Seok;Back, Mi-Youn
    • Physical Therapy Korea
    • /
    • v.12 no.1
    • /
    • pp.11-21
    • /
    • 2005
  • The purpose of this study was to investigate how COP displacement of a hemiplegic foot in stance phase during gait is related to clinical balance measures and the recovery stage in hemiplegic stroke patients. Twenty-eight functionally ambulant hemiplegic patients who had suffered from strokes and thirty age-matched healthy subjects participated in this study. COP parameters were calculated. Clinical balance was measured using the Functional Reach Test (FRT) and Timed Up and Go Test (TUGT). The recovery stage, proprioception, and clonus of the ankles or lower extremities were also measured for physical impairment status. The COPx max-displacement in the medial-lateral side of the stroke patients was significantly longer than that of the normal group (p=.038). The COPy max-displacement in the anterior-posterior side of the stroke patients was significantly shorter than that of normal group (p<.001). Significant differences in the COPx and COPy displacement asymmetry index were found between the two groups (p<.01). The FRT was correlated with the COPx displacement (r=.552) and COPy displacement (r=.765). The TUGT was correlated with the COPy displacement (r=-.588) only. The recovery stage of the lower extremities was correlated with COPy displacement (r=.438). The results of the study indicate that the characteristic of COP displacement in hemiplegic feet in stance phase during gait is related to balance ability and recovery in stroke patients. COP parameters acquired by the mapping of foot pressure in stance phase during gait will provide additional useful clinical information. This information can be used by clinicians to assess objectively the pathologic gait with other diseases and to evaluate the therapeutic effects on gait in stroke patients.

  • PDF

Effects of Functional Footwear Designed for Decreasing Ground Reaction Force on Ankle and Foot Range of Motion During Gait in Healthy Individuals

  • Kim, Yong-Wook
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.3
    • /
    • pp.113-120
    • /
    • 2018
  • PURPOSE: This study was conducted to investigate the characteristics of a specific functional shoe in terms of the range of motion (ROM) of ankle and foot joints during walking when compared to a standardized shoe. METHODS: Kinematic ROM data pertaining to ankle, tarsometatarsal, and metatarsophalangeal joints were collected from twenty-six healthy individuals during walking using a ten-camera motion analysis system. Kinematic ROM of each joint in three planes was obtained over ten walking trials consisting of two different shoe conditions. Visual3D motion analysis was finally used to coordinate the kinematic data. All kinematic ROM data were interpolated using a cubic spline algorithm and low-pass filtered with a cutoff frequency of 6 Hz for smoothing. RESULTS: The overall ROM of the ankle joint in the sagittal and coronal planes when wearing the specific functional shoe was significantly decreased in both ankles during walking when compared to wearing a standard shoe (p<.05). Significantly more flexibility was observed when wearing the specific functional shoe in the tarsometatarsal and metatarsophalangeal joints compared to a standard shoe (p<.05). CONCLUSION: Although clinical application of the specific functional shoe has shown clear positive effects on knee and ankle moments, the results of this study provide important background information regarding the kinematic mechanisms of these effects.

The Effects of Robot-Assisted Gait Training for the Patient With Post Stroke: A Meta-Analysis (뇌졸중 환자에게 적용한 로봇보행 재활훈련의 효과: 메타분석)

  • Park, So-Yeon
    • Physical Therapy Korea
    • /
    • v.22 no.2
    • /
    • pp.30-40
    • /
    • 2015
  • Robot-assisted rehabilitation therapy has been used to increase physical function in post-stroke patients. The aim of this meta-analysis was to identify whether robot-assisted gait training can improve patients' functional abilities. A comprehensive search was performed of PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), Physiotherapy Evidence Database (PEDro), Academic Search Premier (ASP), ScienceDirect, Korean Studies Information Service System (KISS), Research Information Sharing Service (RISS), Korea National Library, and the Korean Medical Database up to April, 2014. Fifteen eligible studies researched the effects of robot-assisted gait training to a control group. All outcome measures were classified by International Classification of Functioning, Disability, and Health (ICF) domains (body function and structures, activity, and participation) and were pooled for calculating the effect size. The overall effect size of the robot-assisted gait training was .356 [95% confidence interval (CI): .186~.526]. When the effect was compared by the type of electromechanical robot, Gait Trainer (GT) (.471, 95% CI: .320~.621) showed more effective than Lokomat (.169, 95% CI: .063~.275). In addition, acute stroke patients showed more improvement than others. Although robot-assisted gait training may improve function, but there is no scientific evidence about the appropriate treatment time for one session or the appropriate duration of treatment. Additional researchers are needed to include more well-designed trials in order to resolve these uncertainties.

Effects of Diagonal Pattern Self-Exercise on Trunk Control, Balance, and Gait Ability in Chronic Stroke Patients

  • Yang, Jaeho;Park, Shinjun;Kim, Soonhee
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.2
    • /
    • pp.2028-2035
    • /
    • 2020
  • Background: Weakness of the trunk muscles decreases the trunk control ability of stroke patients, which is significantly related to balance and gait. Objectives: To compare the impact of diagonal pattern self-exercise on an unstable surface and a stable surface for trunk rehabilitation on trunk control, balance, and gait ability in stroke patients. Design: Nonequivalent control group design. Methods: Twenty four participants were randomized into the experimental group (diagonal pattern self-exercise while sitting on an unstable surface, n=12) and the control group (diagonal pattern self-exercise while sitting on a stable surface, n=12). All interventions were conducted for 30 minutes, three times a week for four weeks, and the trunk impairment scale (TIS), berg balance scale (BBS), functional gait assessment (FGA), and G-walk were measured. Results: All groups indicated significant increases in all variables (TIS, BBS, FGA, cadence, speed, stride length) after four weeks. The TIS, BBS, FGA, cadence, gait speed, and stride length group-by-time were significantly different between the two groups. Conclusion: We found that, in stroke patients, diagonal pattern self-exercise on an unstable surface is a more effective method for improving trunk control, balance, and gait ability than diagonal pattern self-exercise on a stable surface.

Effects of Trunk Exercise Using Less-affected Extremities on Gait and Balance in Stroke Patients (비마비측 팔다리를 이용한 몸통 운동이 뇌졸중 환자의 균형과 보행에 미치는 영향)

  • Park, Gun-Oh;Park, Kyeu-Nam;Kim, Su-Jin;Woo, Young-Keun
    • PNF and Movement
    • /
    • v.17 no.3
    • /
    • pp.353-368
    • /
    • 2019
  • Purpose: This study investigated the effects of trunk exercise using less-affected extremities on gait and balance in chronic stroke patients. Methods: Thirty subjects with chronic stroke disease were divided into two groups: a trunk exercise group that used less-affected extremities (n=15) and a general trunk exercise group (n=15). All interventions were conducted 30 min a day, 6 times per week, for 3 weeks. Gait parameters were measured before and after the intervention using Zebris FDM-1.5. In addition, all subjects were evaluated using the Trunk Impairment Scale, the Berg Balance Scale, and the Functional Gait Assessment before and after the intervention. Results: Both groups showed improvements on all outcome measured pre- to post-intervention (p<0.05). The groups exhibited significant differences for TIS, BBS, FGA, gait speed, step length, and cadence at post-intervention (p<0.05). Conclusion: This study showed that trunk exercise using less-affected extremities has therapeutic benefits on gait and balance in individuals with chronic stroke disease.

Spatiotemporal Gait Parameters That Predict Gait Function Based on Timed Up and Go Test Performance in the Hemiplegic Stroke Patients

  • Kim, Jeong-Soo;Kim, Jeong-Ah;Jeon, Hye-Seon;Yu, Kyung-Hoon
    • Physical Therapy Korea
    • /
    • v.20 no.4
    • /
    • pp.40-46
    • /
    • 2013
  • The purpose of this study was to determine which spatiotemporal gait parameters obtained during hemiplegic walking could be a predictive factor for the Timed Up and Go test (TUG). Two hundreds nine subjects who had suffered a stroke were recruited for this study. They were participated in two assessments; the TUG test and gait analysis. The relationship between the TUG test and spatiotemporal parameters was analyzed using Pearson's correlation coefficients. In addition, to predict the spatiotemporal gait parameters that correlated most with the TUG scores, we used multiple linear regression analyses (stepwise method). The results show that the normalized velocity was strongly correlated with the TUG performance (r=-.72, p<.001). Additionally, single support percentage (SSP), double support percentage (DSP), step time difference (STD), and step length difference (SLD) significantly were correlated with the TUG test. Normalized velocity, STD, DSP of affected side, and SSP of non-affected side explained 53%, 8%, 3%, 2%, of variance in the TUG test respectively. In conclusion, an increase in gait velocity and a decrease in STD would be effective indicators of improvement on the functional mobility in the stroke rehabilitation.

Effects of Virtual Reality Horse Riding Simulator Training Using a Head-Mounted Display on Balance and Gait Functions in Children with Cerebral Palsy: A Preliminary Pilot Study

  • Kim, Hae Won;Nam, Ki Seok;Son, Sung Min
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.5
    • /
    • pp.273-278
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate the effects of three-dimensional virtual reality horse riding simulator training using a head-mounted display on gait and balance in children with cerebral palsy. Methods: Ten children with cerebral palsy were randomly assigned to the horse riding simulator (HRS) group (n=5) or the horse riding simulator with virtual reality (HRSVR) group (n=5). To evaluate balance, center of gravity (COG) sway velocity and total sway distance of each group were assessed using the Wii balance board, and gait speed and stride length of each group were assessed using a gait analysis system. Results: Intra-group comparisons between pre- and post-intervention measures revealed that there were significant changes in all gait and balance variables such as stride length, gait velocity, COG sway velocity and COG sway distance in the HRSVR group (p<0.05). In the HRS group, there were significant changes in all variables except stride length (p<0.05). In addition, inter-group comparisons showed significant differences between the two groups in stride length, gait velocity and COG sway distance except COG sway velocity (p<0.05). Conclusion: The findings of this study suggest that horse riding simulator training combined with 3D virtual reality can be a new positive therapeutic approach for improving functional performance in children with cerebral palsy.

Comparison of Gait Characteristics in Young and Old Persons with GAITRite System Analysis (GAITRite 시스템 분석을 통한 젊은층과 노년층의 보행특성 비교)

  • Hwang-bo, Gak;Jeong, Hak-young;Bae, Sung-soo
    • PNF and Movement
    • /
    • v.1 no.1
    • /
    • pp.33-41
    • /
    • 2003
  • Objectives : The purpose of this study was to describe and compare the temporo-spatial gait characteristics of healthy young people with those of healthy elderly people. Methods: The data were collected by 40 volunteers. 20 subjects were between 20 and 31 years of age, and 20 subjects were between 65 and 84 years of age. Temporal and spatial parameters of gait were analysed for using the computerized GAITRite system. Results : The system integrates specific components of locomotion to provide a single, numerical representation of gait, the Functional Ambulation Performance score. Differences in gait characteristics between the two groups were examined using a correlated t-test(p<.05). Significant differences were observed between the groups for step length, step/extremity ratio and velocity. Young people demonstrated a significantly larger velocity, step length and step/extremity ratio than the elderly people. Conclusions: These results indicate that the GAITRite system can be useful in detecting footfall patterns and selected time and distance measurements of young and older persons. Additionaly, differences in walking velocity, step length and step/extremity ratio between old and young people may have influenced the gait characteristics measured.

  • PDF

Effects of Treadmill Training with Kinesio Taping of Tibialis Anterior on Muscle Function, Tibialis Anterior Muscle Strength, and Gait Ability in Poststroke Patients

  • Kim, Kyunghun;In, Taesung;Kim, Donghoon
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.3
    • /
    • pp.297-303
    • /
    • 2021
  • Objective: Stroke patients generally have problems with motor function, muscle weakness, and gait.This study was purposed toevaluate the effect of the treadmill training with kinesio taping of tibialis anterior (TKT) on muscle function, tibialis anterior, muscle strength, and gait ability in poststroke patients. Design: A randomized controlled design Methods: The participants were randomly divided in the TKT group (experimental group) and treadmill training with sham kinesio taping (control group), with 21 patients assigned to each group. Both groups receive treadmill training with kinesio taping and sham kinesio taping for 30 minutes per day, five days per week, for four weeks. The motor function was measured using the Fugl-Meyer assessment. A disital manual muscle test and G-walk were used to evaluate ankle dorsiflexor and gait ability.Evaluation was performed baseline and 4 weeks after the experiment. Results: Both groups showed significantly more improvement in muscle function, tibialis anterior muscle strength, cadence, gait velocity, and stridelength in pre-post intervention change(p<0.05).The experimental group showed significantly more improvement in motor function, muscle strength, cadence, gait velocity, and stridelength ability comparedto the control group(p<0.05). Conclusions: These finding show the benefits of treadmill training with kinesio taping for functional recovery in poststroke patients

Effects of the Proprioceptive Neuromuscular Facilitation Patterns Exercise and Protein Intake on Balance, Gait, and Lower Extremity Muscular Strength for Sarcopenia in the Elderly (고유수용성신경근촉진법 패턴 운동과 단백질 섭취가 근감소증 노인의 균형과 보행 및 다리 근력에 미치는 영향)

  • Park, Jae-Cheol;Lee, Dong-Kyu
    • PNF and Movement
    • /
    • v.19 no.3
    • /
    • pp.311-319
    • /
    • 2021
  • Purpose: The study examined the effects of the proprioceptive neuromuscular facilitation pattern exercise and protein intake on balance, gait ability, and lower extremity muscular strength for sarcopenia in the elderly. Methods: A total of 30 elderly people (65~74years) with sarcopenia were recruited and randomized to Group I (n=10), Group II (n=10), and Group III (n=10). Their balance ability was measured using the functional reach test. Group I performed the proprioceptive neuromuscular facilitation pattern exercise and protein intake. Group II performed the proprioceptive neuromuscular facilitation pattern exercise. Group III performed protein intake. Their gait ability was measured using the Timed Up and Go test. Lower extremity muscular strength was measured using the Five Times Sit to Stand test. Results: As a result of comparison within groups, Group I and Group II showed a significant difference in balance, gait, and lower extremity muscular strength after the experiment (p<0.05), and Group I showed a more effectively significant difference than either Group II or Group III in balance, gait, and lower extremity muscular strength before and after the experiment (p<0.05). Conclusion: This study showed that the proprioceptive neuromuscular facilitation patterns exercise and protein intake was effective in balance, gait ability, and lower extremity muscular strength for sarcopenia in the elderly.