• Title/Summary/Keyword: Functional electrical simulation

Search Result 103, Processing Time 0.022 seconds

Simulation Application for Functional Electrical Stimulator (기능적 전기 자극 시뮬레이션 응용프로그램)

  • Jeon, Hyo Chan
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.1
    • /
    • pp.59-64
    • /
    • 2016
  • In this study, the application was developed for the simulation of functional electrical stimulation. It functions to calculate the electrical energy which is transmitted to the patient, to visualize the electrical stimulation waveform, Therapy, Burst and Pulse section as setup of time period requested. The application was verified by comparing the oscilloscope and the graph of the application. XML schema was developed to utilize the contents of simulation which consist of the standard codes that are identified by OID. Using the application, medical experts will be able to research and share the contents of simulation.

Functional Simulation of Logic Circuits by Prolog (Prolog를 이용한 논리회로의 기능적 시뮬레이션)

  • Kim, J.S.;Cho, S.B.;Park, H.J.;Lim, I.C.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1467-1470
    • /
    • 1987
  • This paper proposes a functional simulation algorithm which decrease the internal memory space and run time in simulation of VLSI. Flip-flop, register, ram, rom, ic and fun are described as functional elements in the simulator. Especially icf is made as new functional element by combining the gate and the functional element, therefore icf is used efficiently in simulation of VLSI. The proposed algorithm is implemented on PC-AT(MS-DOS) in by Prolog-1.

  • PDF

Musculotendon Model to Represent Characteristics of Muscle Fatigue due to Functional Electrical Stimulation (기능적 전기자극에 의한 근육피로의 특성을 표현하는 근육 모델)

  • Lim, Jong-Kwang;Son, Jae-Hyun;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.656-658
    • /
    • 1999
  • This paper presents musculotendon model to show the decline in muscle force during functional electrical stimulation (FES). It represent muscle activation and contraction concepts including muscle fatigue. A muscle fatigue term in activation dynamics as a function of the intracellular acidification and the pulsewidth of stimulation pulses change activation to decline muscle force. The computer simulation shows that muscle force decline in stimulation time.

  • PDF

Simulation of Electric Vehicles Combining Structural and Functional Approaches

  • Silva, L.I.;Magallan, G.A.;De La Barrera, P.M.;De Angelo, C.H.;Garcia, G.O.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.848-858
    • /
    • 2014
  • In this paper the construction of a model that represents the behavior of an Electric Vehicle is described. Both the mechanical and the electric traction systems are represented using Multi-Bond Graph structural approach suited to model large scale physical systems. Then the model of the controllers, represented with a functional approach, is included giving rise to an integrated model which exploits the advantages of both approaches. Simulation and experimental results are aimed to illustrate the electromechanical interaction and to validate the proposal.

The AUV design based on component modeling and simulation

  • Kebriaee, Azadeh;Nasiri, Hamidreza
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.83-97
    • /
    • 2012
  • In the present work, design procedure and computer simulation of an AUV are documented briefly. The design procedure containing the design of propulsion system and CFD simulation of hydrodynamics behavior of the hull leads to achieve an optimum mechanical performance of AUV system. After designing, a comprehensive one dimensional model including motor, propeller, and AUV hull behavior simulates the whole dynamics of AUV system. In this design, to select the optimum AUV hull, several noses and tails are examined by CFD tools and the brushless motor is selected based on the first order model of DC electrical motor. By calculating thrust and velocity in functional point, OpenProp as a tool to select the optimum propeller is applied and the characteristics of appropriate propeller are determined. Finally, a computer program is developed to simulate the interaction between different components of AUV. The simulation leads to determine the initial acceleration, final velocity, and angular velocity of electrical motor and propeller. Results show the final AUV performance point is in the maximum efficiency regions of DC electrical motor and propeller.

Functional-Level Design and Simulation of a Graphics Processor (그래픽스 프로세서의 기능적 설계 및 시뮬레이션)

  • Bae, Seong-Ok;Lee, Hee-Choul;Kyung, Chong-Min
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.10
    • /
    • pp.1252-1262
    • /
    • 1988
  • This paper describes a functional-level design and simulation of Graphics Processor(GP) which can be used in various graphics systems. GP is divided into two parts: One is CPU, and the other is the interface to I/O peripherals. In order to achieve fast execution of graphics instructions, the CPU has special ALU, barrel shifter and window comparator and a FIFO for instruction prefetch. I/O part controls the DRAM and VRAM which constitute the GP's local memory, generates the signals to drive monitor, and communicates with the host processor. The functional simulation of CPU was done on Daisy workstation while the I/O part was designed using GENESIL, a silicon compiler.

  • PDF

Muscle Model including Muscle Fatigue Dynamics of Stimulated Skeletal Muscle (전기자극에 의한 골격근의 근육피로를 고려한 근육모델)

  • Lim, Jong-Kwang;Nam, Moon-Hyon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1476-1478
    • /
    • 1999
  • A musculotendon model is proposed to predict muscle force during muscle fatigue due to the continuous functional electrical stimulation(FES). Muscle fatigue dynamics can be modeled as the electrical admittance of muscle fibers and included in activation dynamics based on the{{{{ { Ca}^{2+ } }}}} kinetics. The admittance depends on the fatigue variable that monotonically increase or decrease if electrical pulse exists or not, and on the stimulation parameters and the number of applied pulses. In the response of the change in activation the normalized Hill-type contraction dynamics connected with activation dynamics decline the muscle shortening velocity and thus its force under muscle fatigue. The computer simulation shows that the proposed model can express the muscle fatigue and its recovery without changing any stimulation parameters.

  • PDF

A Line-integral Fuzzy Lyapunov Functional Approach to Sampled-data Tracking Control of Takagi-Sugeno Fuzzy Systems

  • Kim, Han Sol;Joo, Young Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2521-2529
    • /
    • 2018
  • This paper deals with a sampled-data tracking control problem for the Takagi-Sugeno fuzzy system with external disturbances. We derive a stability condition guaranteeing both asymptotic stability and H-infinity tracking performance by employing a newly proposed time-dependent line-integral fuzzy Lyapunov-Krasovskii functional. A new integral inequality is also introduced, by which the proposed stability condition is formulated in terms of linear matrix inequalities. Finally, the effectiveness of the proposed method is demonstrated through a simulation example.

Novel graphene-based optical MEMS accelerometer dependent on intensity modulation

  • Ahmadian, Mehdi;Jafari, Kian;Sharifi, Mohammad Javad
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.794-801
    • /
    • 2018
  • This paper proposes a novel graphene-based optical microelectromechanical systems MEMS accelerometer that is dependent on the intensity modulation and optical properties of graphene. The designed sensing system includes a multilayer graphene finger, a laser diode (LD) light source, a photodiode, and integrated optical waveguides. The proposed accelerometer provides several advantages, such as negligible cross-axis sensitivity, appropriate linearity behavior in the operation range, a relatively broad measurement range, and a significantly wider bandwidth when compared with other important contributions in the literature. Furthermore, the functional characteristics of the proposed device are designed analytically, and are then confirmed using numerical methods. Based on the simulation results, the functional characteristics are as follows: a mechanical sensitivity of 1,019 nm/g, an optical sensitivity of 145.7 %/g, a resonance frequency of 15,553 Hz, a bandwidth of 7 kHz, and a measurement range of ${\pm}10g$. Owing to the obtained functional characteristics, the proposed device is suitable for several applications in which high sensitivity and wide bandwidth are required simultaneously.

Effects of Functional Electrical Stimulation Gait Training with Rhythmic Auditory Stimulation on Balance and Gait Ability of Stroke Patients (리듬청각자극을 동반한 기능적 전기자극 보행훈련이 뇌졸중 환자의 균형과 보행능력에 미치는 영향)

  • Kim, Seon-Hwan;Kim, Young-Min
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.4
    • /
    • pp.95-103
    • /
    • 2018
  • PURPOSE: The present study was conducted to investigate the effects of functional electrical stimulation gait training with rhythmic auditory stimulation on balance and gait ability in stroke patients. METHODS: In this blinded randomized controlled study, 26 stroke patients were assigned to either experimental group (n=13) consisting of 30 min of gait training 5 days per week for 4 weeks while performing functional electrical stimulation gait training with rhythmic auditory simulation, or a control group (n=13) performing the same gait training program, also consisting of 30 minutes 5 days a week and lasting for 4 weeks, but without functional electrical stimulation and rhythmic auditory stimulation. At baseline and after the 4 week intervention, balance was measured using the timed up and go test (TUG). Gait velocity was measured using the 10-meter walk test (10 MWT) and gait ability was assessed using the functional gait assessment (FGA). RESULTS: After the intervention, the experimental group showed statistically significant differences in gait velocity and ability (10 MWT, FGA) (p<.05). Between-group differences were statistically significant in gait velocity and ability (10 MWT, FGA) (p<.05). CONCLUSION: The findings suggest that functional electrical stimulation gait training with a rhythmic auditory stimulation gait training program may help improve gait ability in stroke patients.