• 제목/요약/키워드: Functional connectivity network

검색결과 53건 처리시간 0.027초

Design of In-situ Self-diagnosable Smart Controller for Integrated Algae Monitoring System

  • Lee, Sung Hwa;Mariappan, Vinayagam;Won, Dong Chan;Shin, Jaekwon;Yang, Seungyoun
    • International Journal of Advanced Culture Technology
    • /
    • 제5권1호
    • /
    • pp.64-69
    • /
    • 2017
  • The rapid growth of algae occurs can induce the algae bloom when nutrients are supplied from anthropogenic sources such as fertilizer, animal waste or sewage in runoff the water currents or upwelling naturally. The algae blooms creates the human health problem in the environment as well as in the water resource managers including hypoxic dead zones and harmful toxins and pose challenges to water treatment systems. The algal blooms in the source water in water treatment systems affects the drinking water taste & odor while clogging or damaging filtration systems and putting a strain on the systems designed to remove algal toxins from the source water. This paper propose the emerging In-Situ self-diagnosable smart algae sensing device with wireless connectivity for smart remote monitoring and control. In this research, we developed the In-Site Algae diagnosable sensing device with wireless sensor network (WSN) connectivity with Optical Biological Sensor and environmental sensor to monitor the water treatment systems. The proposed system emulated in real-time on the water treatment plant and functional evaluation parameters are presented as part of the conceptual proof to the proposed research.

Understanding Neurogastroenterology From Neuroimaging Perspective: A Comprehensive Review of Functional and Structural Brain Imaging in Functional Gastrointestinal Disorders

  • Kano, Michiko;Dupont, Patrick;Aziz, Qasim;Fukudo, Shin
    • Journal of Neurogastroenterology and Motility
    • /
    • 제24권4호
    • /
    • pp.512-527
    • /
    • 2018
  • This review provides a comprehensive overview of brain imaging studies of the brain-gut interaction in functional gastrointestinal disorders (FGIDs). Functional neuroimaging studies during gut stimulation have shown enhanced brain responses in regions related to sensory processing of the homeostatic condition of the gut (homeostatic afferent) and responses to salience stimuli (salience network), as well as increased and decreased brain activity in the emotional response areas and reduced activation in areas associated with the top-down modulation of visceral afferent signals. Altered central regulation of the endocrine and autonomic nervous responses, the key mediators of the brain-gut axis, has been demonstrated. Studies using resting-state functional magnetic resonance imaging reported abnormal local and global connectivity in the areas related to pain processing and the default mode network (a physiological baseline of brain activity at rest associated with self-awareness and memory) in FGIDs. Structural imaging with brain morphometry and diffusion imaging demonstrated altered gray- and white-matter structures in areas that also showed changes in functional imaging studies, although this requires replication. Molecular imaging by magnetic resonance spectroscopy and positron emission tomography in FGIDs remains relatively sparse. Progress using analytical methods such as machine learning algorithms may shift neuroimaging studies from brain mapping to predicting clinical outcomes. Because several factors contribute to the pathophysiology of FGIDs and because its population is quite heterogeneous, a new model is needed in future studies to assess the importance of the factors and brain functions that are responsible for an optimal homeostatic state.

Functional Magnetic Resonance Imaging with Arterial Spin Labeling: Techniques and Potential Clinical and Research Applications

  • Kim, Ju Ho;Choi, Dae Seob;Park, Sung Eun;Choi, Ho Cheol;Kim, Seong Hu
    • Investigative Magnetic Resonance Imaging
    • /
    • 제21권2호
    • /
    • pp.91-96
    • /
    • 2017
  • Purpose: To describe technical methods for functional magnetic resonance imaging (fMRI) study with arterial spin labeling (ASL) compared to blood oxygenation level-dependent (BOLD) technique and discuss the potential of ASL for research and clinical practice. Materials and Methods: Task-based (n = 1) and resting-state fMRI (rs-fMRI) (n = 20) were performed using ASL and BOLD techniques. Results of both techniques were compared. Results: For task-based fMRI with finger-tapping, the primary motor cortex of the contralateral frontal lobe and the ipsilateral cerebellum were activated by both BOLD and ASL fMRI. For rs-fMRI of sensorimotor network, functional connectivity showed similar results between BOLD and ASL. Conclusion: ASL technique has potential application in clinical and research fields because all brain perfusion imaging, CBF measurement, and rs-fMRI study can be performed in a single acquisition.

Accelerated Resting-State Functional Magnetic Resonance Imaging Using Multiband Echo-Planar Imaging with Controlled Aliasing

  • Seo, Hyung Suk;Jang, Kyung Eun;Wang, Dingxin;Kim, In Seong;Chang, Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • 제21권4호
    • /
    • pp.223-232
    • /
    • 2017
  • Purpose: To report the use of multiband accelerated echo-planar imaging (EPI) for resting-state functional MRI (rs-fMRI) to achieve rapid high temporal resolution at 3T compared to conventional EPI. Materials and Methods: rs-fMRI data were acquired from 20 healthy right-handed volunteers by using three methods: conventional single-band gradient-echo EPI acquisition (Data 1), multiband gradient-echo EPI acquisition with 240 volumes (Data 2) and 480 volumes (Data 3). Temporal signal-to-noise ratio (tSNR) maps were obtained by dividing the mean of the time course of each voxel by its temporal standard deviation. The resting-state sensorimotor network (SMN) and default mode network (DMN) were estimated using independent component analysis (ICA) and a seed-based method. One-way analysis of variance (ANOVA) was performed between the tSNR map, SMN, and DMN from the three data sets for between-group analysis. P < 0.05 with a family-wise error (FWE) correction for multiple comparisons was considered statistically significant. Results: One-way ANOVA and post-hoc two-sample t-tests showed that the tSNR was higher in Data 1 than Data 2 and 3 in white matter structures such as the striatum and medial and superior longitudinal fasciculus. One-way ANOVA revealed no differences in SMN or DMN across the three data sets. Conclusion: Within the adapted metrics estimated under specific imaging conditions employed in this study, multiband accelerated EPI, which substantially reduced scan times, provides the same quality image of functional connectivity as rs-fMRI by using conventional EPI at 3T. Under employed imaging conditions, this technique shows strong potential for clinical acceptance and translation of rs-fMRI protocols with potential advantages in spatial and/or temporal resolution. However, further study is warranted to evaluate whether the current findings can be generalized in diverse settings.

생명현상에 대한 과학적 관찰에서 나타나는 과학 교사들의 두뇌 활성 및 기능적 연결 (Science Teachers' Brain activation and functional connectivity during scientific observation on the biological phenomena)

  • 이준기;변정호;권용주
    • 한국과학교육학회지
    • /
    • 제29권6호
    • /
    • pp.730-740
    • /
    • 2009
  • 이 연구의 목적은 중, 고등학교 과학교사들의 생명 현상에 대한 과학적 관찰에서 나타나는 두뇌의 활성 양상 및 기능적 연결 네트워크를 규명하는 것이다. 이를 위해 중, 고등학교에서 근무하는 26명의 건강한 오른손잡이 과학교사들이 이 연구에 참여하였다. 과학 교사들의 과제수행 과정에서의 두뇌활성을 측정하기 위하여 3.0T(테슬라)의 fMRI 시스템과 블록디자인의 관찰과제가 사용되었다. 신호의 수집과 분석에는 SPM2 프로그램이 활용되었다. 연구결과에 따르면, 관찰과정에서 과학교사들은 좌측 상전두이랑, 중전두이랑, 중심전두이랑, 하전두이랑, 양측 상두정소엽, 좌측 하두정소엽, 좌측 쐐기전소엽, 우측 중측두이랑, 양측 방추이랑, 좌측 상후두이랑, 양측 중후두이랑, 좌측 하후두이랑, 우측 혀이랑, 양측 방추이랑, 양측 쐐기소엽, 우측 해마옆이랑, 좌측 조가비핵, 그리고 양측 소뇌비탈의 활성을 보였다. 또한 이들 영역 중 관찰과정에서 기능적으로 연결성을 보이는 네트워크를 형성하는 것으로 선정된 11개의 영역에서 10개의 유의미한 기능적 연결을 형성하였다. 이러한 결과는 생명현상에 대한 과학적 관찰이 단순한 감각수용만을 넘어선 기능적 연결이 필요함을 시사한다.

Analysis of a Large-scale Protein Structural Interactome: Ageing Protein structures and the most important protein domain

  • Bolser, Dan;Dafas, Panos;Harrington, Richard;Schroeder, Michael;Park, Jong
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2003년도 제2차 연례학술대회 발표논문집
    • /
    • pp.26-51
    • /
    • 2003
  • Large scale protein interaction maps provide a new, global perspective with which to analyse protein function. PSIMAP, the Protein Structural Interactome Map, is a database of all the structurally observed interactions between superfamilies of protein domains with known three-dimensional structure in thePDB. PSIMAP incorporates both functional and evolutionary information into a single network. It makes it possible to age protein domains in terms of taxonomic diversity, interaction and function. One consequence of it is to predict the most important protein domain structure in evolution. We present a global analysis of PSIMAP using several distinct network measures relating to centrality, interactivity, fault-tolerance, and taxonomic diversity. We found the following results: ${\bullet}$ Centrality: we show that the center and barycenter of PSIMAP do not coincide, and that the superfamilies forming the barycenter relate to very general functions, while those constituting the center relate to enzymatic activity. ${\bullet}$ Interactivity: we identify the P-loop and immunoglobulin superfamilies as the most highly interactive. We successfully use connectivity and cluster index, which characterise the connectivity of a superfamily's neighbourhood, to discover superfamilies of complex I and II. This is particularly significant as the structure of complex I is not yet solved. ${\bullet}$ Taxonomic diversity: we found that highly interactive superfamilies are in general taxonomically very diverse and are thus amongst the oldest. This led to the prediction of the oldest and most important protein domain in evolution of lift. ${\bullet}$ Fault-tolerance: we found that the network is very robust as for the majority of superfamilies removal from the network will not break up the network. Overall, we can single out the P-loop containing nucleotide triphosphate hydrolases superfamily as it is the most highly connected and has the highest taxonomic diversity. In addition, this superfamily has the highest interaction rank, is the barycenter of the network (it has the shortest average path to every other superfamily in the network), and is an articulation vertex, whose removal will disconnect the network. More generally, we conclude that the graph-theoretic and taxonomic analysis of PSIMAP is an important step towards the understanding of protein function and could be an important tool for tracing the evolution of life at the molecular level.

  • PDF

NMEA 2000 기반 2차원 초음파 풍향 풍속계에 관한 연구 (A Study on NMEA 2000 based two-dimensional Ultrasonic Anemometer)

  • 김종현;박동현;김경엽;유영호
    • 한국항행학회논문지
    • /
    • 제15권1호
    • /
    • pp.25-31
    • /
    • 2011
  • 최근에는 NMEA 2000 프로토콜이 SOLAS 선박의 실시간 네트워크 장비의 표준으로 인증 된다. 본 논문에서는 항해 필수 장비인 초음파 센서를 이용한 NMEA 2000이 탑재된 2차원 풍향 풍속계를 개발하였다. 개발된 시스템은 NMEA 2000 장비와의 연결을 테스트하기 위해 수심, 속도, GPS 장비로 구성된 NMEA 2000 네트워크에 연결하였으며, 기존에 제작된 타사 풍향 풍속계와 비교하기 위해 기능시험을 수행하였다.

멀티미디어 데이터 처리를 위한 ODBC 드라이버 개발에 관한 연구 (A Study of Development ODBC Driver for Multimedia Data Processing)

  • 이말례;박일록
    • 한국컴퓨터정보학회논문지
    • /
    • 제3권3호
    • /
    • pp.23-30
    • /
    • 1998
  • ODBC는 동적인 클라이언트/서버 환경에서 특히 효과적이다. ODBC는 멀티미디어데이터를 처리할 수 있는 특징 때문에 멀티미디어 서버로 지원할 수 있다. 본 논문에서는 관계형 DBMS 위한 ODBC 드라이버를 개발하였다. 이 드라이버는 클라이언트 모듈과 서버 모듈로 구성되었다. 클라이언트 모듈은 SRM 이라 하고 서버모듈은 CSM 이라 하였다. 이들 두 모듈은 NSM 이라 부르는 네트워크 모듈을 통해서 연결된다. 본 논문에서 개발한ODBC 드라이버 테스트는 기능과 정보처리 상호 운용 가능성을 테스트하였으며, 그 결과 드라이버는 클라이언트 DBMS 툴로서 성공적이었고, 멀티미디어 데이터 처리가 가능할 뿐만 아니라 DBMS 툴을 포함하는 클라이언트 응용 프로그래밍 인터페이스를 지원할 수 있는 것으로 나타났다.

  • PDF

뇌영상 MEG 데이터에 대한 통계적 분석 문제 (Statistical analysis issues for neuroimaging MEG data)

  • Kim, Jaehee
    • 응용통계연구
    • /
    • 제35권1호
    • /
    • pp.161-175
    • /
    • 2022
  • 뇌활동으로 발생하는 전기신호는 다시 자기신호로 유도되는데 센서로 측정한 것을 뇌자도(magnetoencephalography, MEG)라고 한다. MEG 기술은 비접촉, 비침습적인 측정방법이고 시간분해능과 공간분해능력이이 우수하기 때문에 뇌의 기능적인 정보를 얻는데 유용하게 사용될 수 있다. 또한 MEG 신호를 측정하고 분석하여 뇌신경전류의 활동을 이해할 수 있고 나아가 정밀한 뇌기능 연구가 가능하다. 본 연구에서는 뇌 활동(brain activity) 현상에 관한 궁극적 정보를 얻기위해 MEG 데이터의 특성을 설명하고 통계적 문제를 다루어 앞으로 뇌연구에 통계학의 필요성과 뇌정보학의 중요성을 강조하고자 한다.

Reconstruction and Exploratory Analysis of mTORC1 Signaling Pathway and Its Applications to Various Diseases Using Network-Based Approach

  • Buddham, Richa;Chauhan, Sweety;Narad, Priyanka;Mathur, Puniti
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권3호
    • /
    • pp.365-377
    • /
    • 2022
  • Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biological functions by transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In cancer, this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. In the present work, we congregated an electronic network of mTORC1 built on an assembly of data using natural language processing, consisting of 470 edges (activations/interactions and/or inhibitions) and 206 nodes representing genes/proteins, using the Cytoscape 3.6.0 editor and its plugins for analysis. The experimental design included the extraction of gene expression data related to five distinct types of cancers, namely, pancreatic ductal adenocarcinoma, hepatic cirrhosis, cervical cancer, glioblastoma, and anaplastic thyroid cancer from Gene Expression Omnibus (NCBI GEO) followed by pre-processing and normalization of the data using R & Bioconductor. ExprEssence plugin was used for network condensation to identify differentially expressed genes across the gene expression samples. Gene Ontology (GO) analysis was performed to find out the over-represented GO terms in the network. In addition, pathway enrichment and functional module analysis of the protein-protein interaction (PPI) network were also conducted. Our results indicated NOTCH1, NOTCH3, FLCN, SOD1, SOD2, NF1, and TLR4 as upregulated proteins in different cancer types highlighting their role in cancer progression. The MCODE analysis identified gene clusters for each cancer type with MYC, PCNA, PARP1, IDH1, FGF10, PTEN, and CCND1 as hub genes with high connectivity. MYC for cervical cancer, IDH1 for hepatic cirrhosis, MGMT for glioblastoma and CCND1 for anaplastic thyroid cancer were identified as genes with prognostic importance using survival analysis.