• Title/Summary/Keyword: Functional behavior simulation

Search Result 52, Processing Time 0.029 seconds

Virtual Prototyping of Consumer Electronic Products by Embedding HMI Functional Simulation into VR Techniques (HMI 기능성 시뮬레이션과 VR 기법과의 연동을 통한 개인용 전자제품의 가상시작 방안)

  • Park, Hyung-Jun;Bae, Chae-Yeol;Lee, Kwan-Heng
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.2
    • /
    • pp.87-94
    • /
    • 2007
  • The functional behavior of a consumer electronic product is nearly all expressed with human-machine interaction (HMI) tasks. Although physical prototyping and computer aided design (CAD) software can show the appearance of the product, they cannot properly reflect its functional behavior. In this paper, we propose an approach to virtual prototyping (VP) that incorporates HMI functional simulation into virtual reality techniques in order to enables users to capture not only the realistic look of a consumer electronic product but also its functional behavior. We adopt state transition methodology to capture the HMI functional behavior of the product into a state transition chart, which is later used to construct a finite state machine (FSM) for the functional simulation of the product. The FSM plays an important role to control the transition between states of the product. We have developed a VP system based on the proposed approach. The system receives input events such as mouse clicks on buttons and switches of the virtual prototype model, and it reacts to the events based on the FSM by activating associated activities. The system provides the realistic visualization of the product and the vivid simulation of its functional behavior using head-mounted displays (HMD) and stereo speakers. It can easily allow users to perform functional evaluation and usability testing. A case study about the virtual prototyping of an MP3 player is given to show the usefulness of the proposed approach.

Virtual Prototyping of Portable Consumer Electronic Products Based on HMI Functional Simulation (HMI 기능 시뮬레이션 기반 개인용 휴대전자제품의 가상시작)

  • Park, Hyung-Jun;Bae, Chae-Yeol;Moon, Hee-Cheol;Lee, Kwan-Heng
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.854-861
    • /
    • 2005
  • The functional behavior of a portable consumer electronic (PCE) product is nearly all expressed with human-machine interaction (HMI) tasks. Although physical prototyping and computer aided design (CAD) software can show the appearance of the product, they cannot properly reflect its functional behavior. In this paper, we propose a virtual prototyping (VP) system that incorporates virtual reality and HMI functional simulation in order to enables users to capture not only the realistic look of a PCE product but also its functional behavior. We obtain geometric part models of the product and their assembly and kinematics information with the help of CAD and reverse engineering tools, and visualize them with various display tools. We adopt state transition methodology to capture the HMI functional behavior of the product into a state transition chart, which is later used to construct a finite state machine (FSM) for the functional simulation of the product. The FSM plays an important role to control the transition between states of the product. The proposed VP system receives input events such as mouse clicks on buttons and switches of the virtual prototype model, and it reacts to the events based on the FSM by activating associated activities. The VP system provides the realistic visualization of the product and the vivid simulation of its functional behavior. It can easily allow users to perform functional evaluation and usability testing. Moreover, it can greatly reduce communication errors occurring in a typical product development process. A case study about VP of an MP3 player is given to show the usefulness of the proposed VP system.

  • PDF

Design Evaluation of Portable Electronic Products Using AR-Based Interaction and Simulation (증강현실 기반 상호작용과 시뮬레이션을 이용한 휴대용 전자제품의 설계품평)

  • Park, Hyung-Jun;Moon, Hee-Cheol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.3
    • /
    • pp.209-216
    • /
    • 2008
  • This paper presents a novel approach to design evaluation of portable consumer electronic (PCE) products using augmented reality (AR) based tangible interaction and functional behavior simulation. In the approach, the realistic visualization is acquired by overlaying the rendered image of a PCE product on the real world environment in real-time using computer vision based augmented reality. For tangible user interaction in an AR environment, the user creates input events by touching specified regions of the product-type tangible object with the pointer-type tangible object. For functional behavior simulation, we adopt state transition methodology to capture the functional behavior of the product into a markup language-based information model, and build a finite state machine (FSM) to controls the transition between states of the product based on the information model. The FSM is combined with AR-based tangible objects whose operation in the AR environment facilitates the realistic visualization and functional simulation of the product, and thus realizes faster product design and development. Based on the proposed approach, a product design evaluation system has been developed and applied for the design evaluation of various PCE products with highly encouraging feedbacks from users.

Real-Time Simulation of an Excavator Considering the Functional Valves of the MCV (MCV의 기능밸브를 고려한 굴삭기의 실시간 시뮬레이션)

  • Im, Yong-Hyeon;Lee, Sang-Wook;Cho, Min-Gi;Shin, Dae-Young;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.38-47
    • /
    • 2019
  • In this paper, a real-time simulation model of an excavator using Amesim was proposed, considered the operation of functional valves with the main control valve (MCV). The hydraulic system models including the pump and MCV have been developed. The kinematic and dynamic models of the manipulator have also been developed, to confirm the behavior of the excavator. The MCV model includes various functional valves such as the regenerative valves, holding valves, swing and boom priority valves, and regen-cut valves so that simulations similar to real excavators can be performed. Additionally, to obtain the real-time calculation performance, the parts with no major influence on the dynamic behavior were simplified, high frequency factors were removed, and parameters were optimized. The models were compared with each other through the numerical analysis with variable time-step and fixed time-step, and the results were verified by comparison with the results of the actual vehicle tests.

The AUV design based on component modeling and simulation

  • Kebriaee, Azadeh;Nasiri, Hamidreza
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.83-97
    • /
    • 2012
  • In the present work, design procedure and computer simulation of an AUV are documented briefly. The design procedure containing the design of propulsion system and CFD simulation of hydrodynamics behavior of the hull leads to achieve an optimum mechanical performance of AUV system. After designing, a comprehensive one dimensional model including motor, propeller, and AUV hull behavior simulates the whole dynamics of AUV system. In this design, to select the optimum AUV hull, several noses and tails are examined by CFD tools and the brushless motor is selected based on the first order model of DC electrical motor. By calculating thrust and velocity in functional point, OpenProp as a tool to select the optimum propeller is applied and the characteristics of appropriate propeller are determined. Finally, a computer program is developed to simulate the interaction between different components of AUV. The simulation leads to determine the initial acceleration, final velocity, and angular velocity of electrical motor and propeller. Results show the final AUV performance point is in the maximum efficiency regions of DC electrical motor and propeller.

An Efficient Simulation Technique to Verify Real-time Performance of Vehicle Control Systems (자동차 제어 시스템의 실시간 성능 검증을 위한 효율적인 실시간 시뮬레이션 기법)

  • Kim, Seunggon;We, Kyoung-Soo;Lee, Chang-Gun;Yi, Kyongsu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.187-193
    • /
    • 2015
  • When developing a vehicle control system, simulation methods are widely used to validate the whole system in the early development phase. With this regard, the simulator should correctly behave just like the real parts that are not yet implemented while interacting with already implemented parts in real-time. However, most simulators cannot provide functionally and temporally accurate behaviors of the target system. In order to overcome this limitation, this paper proposes a novel real-time simulation technique that can efficiently simulate the temporal behavior as well as the functional behavior of the simulation target system.

A Survey on the Purchasing Behavior and Preference of Mountain Climbing Pants for the Development of Women's Functional Mountain Climbing Pants Patterns (여성용 기능성 등산용 팬츠 패턴 개발을 위한 등산용 팬츠의 구매 및 선호도 조사 연구)

  • Suh, Chuyeon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.1
    • /
    • pp.90-100
    • /
    • 2013
  • This study uses a survey questionnaire to identify the major customer age class of adult women who frequently mountain climb as well as analyze their purchasing behavior and preference of mountain climbing pants. The field survey, classified the types of mountain climbing pants, selected the types of mountain climbing pants that consumers preferred, and then analyzed the degrees of satisfaction for mountain climbing pants based on an evaluation of wearing. Specifically, the patterns of mountain climbing pants preferred by national brands and licensed brands were compared and analyzed. The validities of commercially available mountain climbing pants were analyzed through an evaluation of wearing comfort and an evaluation of wearing on a 3D simulation of the human body. The basic data for the development of mountain climbing pants are presented based on the results. The survey questionnaire results indicate that the major class of women consumers of mountain climbing goods was in the 40s to 50s; in addition, the types they most wore were straight type and functional cut type. The preferred brand was KOLONSPORT (which occupies a 21.2% market share), followed by THE NORTH FACE (13.0%), K2 (11.5%) and Kolping (10.0%). The main reason (26.8% of responses) that they preferred these brands was functionality. The difference in measurement of climbing pants patterns could be analyzed accurately in the pattern analysis, the wearing evaluation by the self-sonsory test and evaluation of wearing comfort through 3D simulation. The results of ANOVA on motions and items indicates that no significant difference was found among motions; however, a significant difference was recognized among items. A comparison of straight type and functional cut type showed that the functional cut type excelled slightly in wearing comfort.

Nystatin Drug as an Effective Corrosion Inhibitor for Mild Steel in Acidic Media- An Experimental and Theoretical Study

  • Mehmeti, Valbone
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.21-31
    • /
    • 2022
  • Potentiodynamic polarization, EIS measurements, quantum chemical calculations, and molecular dynamic simulations were used to investigate the corrosion behavior of mild steel in 0.5 M aqueous hydrochloric acid medium in the presence or absence of nystatin drug. Potentiodynamic tests suggested that this molecule could act as a mixed inhibitor due to its adsorption on the mild steel surface. The objective of this study was to exploit theoretical calculations to gain a better understanding mechanism of inhibition. Calculating the adsorption behavior of the investigated molecule on Fe (1 1 0) surface was accomplished using Monte Carlo simulation. Molecules were also investigated using Density Functional Theory (DFT), specifically PBE functional, in order to identify the link between molecular structure and corrosion inhibition behavior of the compound under investigation. Adsorption energies between nystatin and iron were estimated more accurately by utilizing Molecular Mechanics calculation with Periodic Boundary Conditions (PBC). Estimated theoretical parameters significantly assisted our understanding of the corrosion inhibition mechanism exhibited by this molecule. They were found to be in accord with experimental results.

Kinematic/Inverse Kinematic Analysis of Captive Trajectory Simulation System with Functional Redundancy (기능적 여유자유도를 가지는 CTS 시스템의 기구학/역기구학 해석)

  • Lee, Do Kwan;Lee, Sang Jeong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.263-271
    • /
    • 2017
  • A captive trajectory simulation (CTS) system is used to investigate the separation behavior of the store model by moving the model to an arbitrary pose and position based on aerodynamic data. A CTS system operated inside a wind tunnel is designed to match the structure of the wind tunnel facility. As a result, each CTS system has different kinematic structure, and inverse kinematic analysis of the system is necessary. In this study, kinematic/inverse kinematic analysis for the CTS system with functional redundancy is performed. Inverse kinematic analysis with combined numerical and analytical approach is especially proposed. The suggested approach utilizes the redundancy to improve the safety of the system, and has advantages in real time analysis.

Simulation of Electric Vehicles Combining Structural and Functional Approaches

  • Silva, L.I.;Magallan, G.A.;De La Barrera, P.M.;De Angelo, C.H.;Garcia, G.O.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.848-858
    • /
    • 2014
  • In this paper the construction of a model that represents the behavior of an Electric Vehicle is described. Both the mechanical and the electric traction systems are represented using Multi-Bond Graph structural approach suited to model large scale physical systems. Then the model of the controllers, represented with a functional approach, is included giving rise to an integrated model which exploits the advantages of both approaches. Simulation and experimental results are aimed to illustrate the electromechanical interaction and to validate the proposal.