• Title/Summary/Keyword: Functional Concrete

Search Result 255, Processing Time 0.02 seconds

Mechanical Performance of Fiber Reinforced Lean Concrete for Subbase of Newly Developed Multi-Functional Composite Pavement System (다기능 복합 포장용 섬유보강 콘크리트 기층 재료의 역학적 특성평가)

  • Jang, Young-Jae;Park, Cheol-Woo;Park, Young-Hwan;Jung, Woo-Tai;Choi, Sung-Yong;Yoo, Pyeong-Jun
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.21-29
    • /
    • 2012
  • PURPOSES: This study is to investigate the mechanical performance of the fiber reinforced lean concrete with respect to different types of fibers. METHODS: Increased vehicle weight and other causes from the exposed conditions have accelerated the deteriorations of road pavement. A new multi-functional composite pavement system is being developed recently in order to extend service life and upgrade the pavement. A variety of tests were conducted before and after hardening of the concrete. RESULTS: From the test results, it was found that the use of different types of fibers did not affect the compressive strength development. This might be due to the inherent property of the lean concrete. When steel fibers were used relatively greater flexural strength and flexural fracture toughness were developed. Also addition of fly ash by replacing a part of Portland cement the fracture toughness was slightly increased. CONCLUSIONS: It has been known that the addition of fibers and use of mineral admixture can be positively considered in the development of multi-functional composite pavement system as its required mechanical performance is obtained.

A Study on Strength Properties of Mortar added Nano Titanium Dioxide (나노 TIO2 첨가 모르타르의 강도 특성에 관한 연구)

  • Choi, Eung-Kyoo;Kim, Yeon-Hee;Park, Jong-Keun
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.2
    • /
    • pp.83-87
    • /
    • 2010
  • Functional Concrete Added Titanium Dioxide(TIO2) for photocatalysis was about a result strength Reduction by recent studies. Therefore, The purpose of the study is to review the possibility of TIO2 for using concrete admixture. As a result, Nano TIO2 for concrete admixture helps increased strength of concrete and here are some of the details. The compressive strength and flexural strength of cement mortar added same amount of Nano SF and TIO2 for admixture were development of strength a certain level each other. when Nano admixture use 10%, SF and TIO2 showed development of strength 60% and 40% each other gradually. If I use over 10% Both SF and TIO2, they showed irregular strength variations.

A Study on Development of Repairing Mortar Using Multi -functional Slag Aggregate (다기능성 슬래그 골재를 이용한 보수용 모르타르의 개발에 관한 연구)

  • Lee Dae Kyung;Lee Sang Uk;Cho Sung Hyun;Park Duk Jun;Bae Kee Sun;Oh Sang Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.281-284
    • /
    • 2005
  • This research is a study on development of section restoration mortar by multi-functional slag aggregate. Compressive strength, flexural strength and other physical properties on five standards are measured to obtain optimal addition rate (of multi-functional aggregate) and to investigate applicability of multi-functional aggregate in developing repair mortar. As the study result, the properties of repair mortar, such as compressive strength and flexural strength etc. are improved by addition of multi-functional aggregate and confirmed reduction effect of air content.

  • PDF

A Study on the Corrosion Monitoring of Multi-functional Sensors for Reinforced Concrete Structures: Part 1 (철근 콘크리트 구조물용 다기능 멀티센서의 부식 모니터링에 관한 연구: Part 1)

  • Jin, Chung-Kuk;Jeong, Jin-A;Kyoung, Eun-Jin
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.270-274
    • /
    • 2012
  • This study represents the result of corrosion monitoring on reinforced concrete specimens by means of multi-functional corrosion monitoring sensors. To confirm the effectiveness of the sensors, eight different kinds of condition were adopted. Test factors were corrosion potential, current, corrosion rate, resistivity, and temperature, which were monitored with the sensors. Through this study, judging corrosion of steel in concrete with single corrosion factor such as corrosion potential was difficult, because many other factors can have an influence on the reaction of corrosion. By using three different kinds of sensors, it could enhance the accuracy of corrosion monitoring.

A Study on the Analysis application of Repairing Mortar Using Multi-functional Slag Aggregate (다기능성 슬래그 골재를 이용한 보수모르타르의 현장 적용성 평가에 관한 실험적 연구)

  • Park Sang Hun;Nam Ki Sui;Lee Sang Uk;Cho Sung Hyun;Bae Kee Sun;Oh Sang Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.285-288
    • /
    • 2005
  • This paper is an experimental study on applicability of repairing mortar using multi-functional slag aggregate. In this study, automatic construction machinery system were adapted, and their performance were evaluated by the using of those systems. In order to verify the effect of multi-functional aggregate, two kinds of aggregate were used and compared of their physical properties. The results indicate that multi-functional aggregate appears good physical properties such as durability, permeability coefficient.

  • PDF

A study on the functional and environmentally friendly concrete (친환경 기능성 콘크리트에 관한 연구 방안)

  • Baek, Jong-Myeong;Seo, Moon-Seog;Lee, Sang-Yong
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.565-573
    • /
    • 2009
  • Even in case of new materials, materials that are not only harmless for the current global environment but also have high-performance and high-function are sought-after in consideration of the global environmental problems. Moreover, in construction areas where a large amount of cement and concrete are used, the establishment of the recycling technology or transformation into resources and energy materials are being put in place. And also, in a situation where the slow and relaxed city and rural life have a high priority, the need for cement and concrete as environmentally friendly new materials that best suit the emotions in human beings is on the rise and a new way to make good use of cement and concrete as new materials in construction technology should be sought. The recently introduced functional and environmentally friendly concrete is aimed at enhancing health through the adjustments of the body biorhythm using far-infrared. Minerals that contain a great amount of the elements with the frequent occurrence of the infrared among earth minerals and concrete are mixed to use structures or finishing materials, which will tackle the issues of smells, mold and corrosion.

  • PDF

Evaluation of Mechanical Properties and Fiber Dispersing Characteristics of Fiber Reinforced Lean Concrete Using Fly Ash and Reject Ash (도로 기층 재료로 활용하기 위한 섬유보강 빈배합 콘크리트에 플라이애시와 리젝트애시를 사용한 경우 역학적 특성 및 섬유 분산성 분석)

  • Jang, Young Jae;Park, Cheol Woo;Park, Young Hwan;Yoo, Pyeong Jun;Jung, Woo Tae;Kim, Yong Jae
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.11-21
    • /
    • 2013
  • PURPOSES: As pavement generally provides service shorter than an expected life cycle, maintenance cost increases gradually. In order to help extending the service life and reduce maintenance cost, a new multi-functional composite pavement system is being developed in Korea. METHODS: This study is a part to develop the multi-functional composite pavement and is to investigate the mechanical performances of fiber-reinforced lean concrete for pavement subbase. The inherent problem of fiber reinforced concrete is dispersion of fibers in concrete mix. This study additionally evaluated fiber dispersion characteristics with respect to different fiber types. RESULTS: From the test results, the compressive strengths of the concretes satisfied the required limit of 5MPa at 7days. The standard deviation of the measured number of fibers were lower in the order of nylon, steel fiber and polypropylene. CONCLUSIONS: Reject ash was shown to be satisfactory as a replacement material to Portland cement in lean concrete base. The fiber volume fraction is suggested to be 0.4% even though the fracture toughness did not vary significantly with respect to fiber types. However, fracture energy absorbed up to complete failure increased with the increased fiber volume fraction increment.