• Title/Summary/Keyword: Functional Annotation

Search Result 111, Processing Time 0.026 seconds

Functional Annotation and Analysis of Korean Patented Biological Sequences Using Bioinformatics

  • Lee, Byung Wook;Kim, Tae Hyung;Kim, Seon Kyu;Kim, Sang Soo;Ryu, Gee Chan;Bhak, Jong
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.269-275
    • /
    • 2006
  • A recent report of the Korean Intellectual Property Office(KIPO) showed that the number of biological sequence-based patents is rapidly increasing in Korea. We present biological features of Korean patented sequences though bioinformatic analysis. The analysis is divided into two steps. The first is an annotation step in which the patented sequences were annotated with the Reference Sequence (RefSeq) database. The second is an association step in which the patented sequences were linked to genes, diseases, pathway, and biological functions. We used Entrez Gene, Online Mendelian Inheritance in Man (OMIM), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) databases. Through the association analysis, we found that nearly 2.6% of human genes were associated with Korean patenting, compared to 20% of human genes in the U.S. patent. The association between the biological functions and the patented sequences indicated that genes whose products act as hormones on defense responses in the extra-cellular environments were the most highly targeted for patenting. The analysis data are available at http://www.patome.net

Comparative Genome Analysis Reveals Natural Variations in the Genomes of Erwinia pyrifoliae, a Black Shoot Blight Pathogen in Apple and Pear

  • Lee, Gyu Min;Ko, Seyoung;Oh, Eom-Ji;Song, Yu-Rim;Kim, Donghyuk;Oh, Chang-Sik
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.428-439
    • /
    • 2020
  • Erwinia pyrifoliae is a Gram-negative bacterial plant pathogen that causes black shoot blight in apple and pear. Although earlier studies reported the genome comparison of Erwinia species, E. pyrifoliae strains for such analysis were isolated in 1996. In 2014, the strain E. pyrifoliae EpK1/15 was newly isolated in the apple tree showing black shoot blight in South Korea. This study aimed to better understand the similarities and differences caused by natural variations at the genomic level between newly isolated E. pyrifoliae EpK1/15 and the strain Ep1/96, which were isolated almost 20 years apart. Several comparative genomic analyses were conducted, and Clusters of Orthologous Groups of proteins (COG) database was used to classify functional annotation for each strain. E. pyrifoliae EpK1/15 had similarities with the Ep1/96 strain in stress-related genes, Tn3 transposase of insertion sequences, type III secretion systems, and small RNAs. The most remarkable difference to emerge from this comparison was that although the draft genome of E. pyrifoliae EpK1/15 was almost conserved, Epk1/15 strain had at least three sorts of structural variations in functional annotation according to COG database; chromosome inversion, translocation, and duplication. These results indicate that E. pyrifoliae species has gone natural variations within almost 20 years at the genomic level, and we can trace their similarities and differences with comparative genomic analysis.

EST Knowledge Integrated Systems (EKIS): An Integrated Database of EST Information for Research Application

  • Kim, Dae-Won;Jung, Tae-Sung;Choi, Young-Sang;Nam, Seong-Hyeuk;Kwon, Hyuk-Ryul;Kim, Dong-Wook;Choi, Han-Suk;Choi, Sang-Heang;Park, Hong-Seog
    • Genomics & Informatics
    • /
    • v.7 no.1
    • /
    • pp.38-40
    • /
    • 2009
  • The EST Knowledge Integrated System, EKIS (http://ekis.kribb.re.kr), was established as a part of Korea's Ministry of Education, Science and Technology initiative for genome sequencing and application research of the biological model organisms (GEAR) project. The goals of the EKIS are to collect EST information from GEAR projects and make an integrated database to provide transcriptomic and metabolomic information for biological scientists. The EKIS constitutes five independent categories and several retrieval systems in each category for incorporating massive EST data from high-throughput sequencing of 65 different species. Through the EKIS database, scientists can freely access information including BLAST functional annotation as well as Genechip and pathway information for KEGG. By integrating complex data into a framework of existing EST knowledge information, the EKIS provides new insights into specialized metabolic pathway information for an applied industrial material.

Deciphering FEATURE for Novel Protein Data Analysis and Functional Annotation (단백질 구조 및 기능 분석을 위한 FEATURE 시스템 개선)

  • Yu, Seung-Hak;Yoon, Sung-Roh
    • Journal of IKEEE
    • /
    • v.13 no.3
    • /
    • pp.18-23
    • /
    • 2009
  • FEATURE is a computational method to recognize functional and structural sites for automatic protein function prediction. By profiling physicochemical properties around residues, FEATURE can characterize and predict functional and structural sites in 3D protein structures in a high-throughput manner. Despite its effectiveness, it has been challenging to apply FEATURE to novel protein data due to limited customization support. To address this problem, we thoroughly analyze the internal modules of FEATURE and propose a methodology to customize FEATURE so that it can be used for new protein data for automatic functional annotations.

  • PDF

SoC Front-end 설계를 위한 통합 환경

  • 김기선;김성식;이희연;김기현;채재호
    • The Magazine of the IEIE
    • /
    • v.30 no.9
    • /
    • pp.1002-1011
    • /
    • 2003
  • In this paper, we introduce an integrated SoC front-end design & verification environment which can be practically used in the embedded 32-bit processor-core SoC VLSI design. Our introduced SoC design & verification environment integrates two most important flows, such as the RTL power estimation and code coverage analysis, with the functional verification (chip validation) flow which is used in the conventional simulation-based design. For this, we developed two simulation-based inhouse tools, RTL power estimator and code coverage analyzer, and used them to adopt them to our RTL design and to increase the design quality of that. Our integrated design environment also includes basic design and verification flows such as the gate-level functional verification with back annotation information and test vector capture & replay environment.

  • PDF

Gene Co-expression Network Analysis Associated with Acupuncture Treatment of Rheumatoid Arthritis: An Animal Model

  • Ravn, Dea Louise;Mohammadnejad, Afsaneh;Sabaredzovic, Kemal;Li, Weilong;Lund, Jesper;Li, Shuxia;Svendsen, Anders Jorgen;Schwammle, Veit;Tan, Qihua
    • Journal of Acupuncture Research
    • /
    • v.37 no.2
    • /
    • pp.128-135
    • /
    • 2020
  • Background: Classical acupuncture is being used in the treatment of rheumatoid arthritis (RA). To explore the biological response to acupuncture, a network-based analysis was performed on gene expression data collected from an animal model of RA treated with acupuncture. Methods: Gene expression data were obtained from published microarray studies on blood samples from rats with collagen induced arthritis (CIA) and non-CIA rats, both treated with manual acupuncture. The weighted gene co-expression network analysis was performed to identify gene clusters expressed in association with acupuncture treatment time and RA status. Gene ontology and pathway analyses were applied for functional annotation and network visualization. Results: A cluster of 347 genes were identified that differentially downregulated expression in association with acupuncture treatment over time; specifically in rats with CIA with module-RA correlation at 1 hour after acupuncture (-0.27; p < 0.001) and at 34 days after acupuncture (-0.33; p < 0.001). Functional annotation showed highly significant enrichment of porphyrin-containing compound biosynthetic processes (p < 0.001). The network-based analysis also identified a module of 140 genes differentially expressed between CIA and non-CIA in rats (p < 0.001). This cluster of genes was enriched for antigen processing and presentation of exogenous peptide antigen (p < 0.001). Other functional gene clusters previously reported in earlier studies were also observed. Conclusion: The identified gene expression networks and their hub-genes could help with the understanding of mechanisms involved in the pathogenesis of RA, as well understanding the effects of acupuncture treatment of RA.

Web-Based Computational System for Protein-Protein Interaction Inference

  • Kim, Ki-Bong
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.459-470
    • /
    • 2012
  • Recently, high-throughput technologies such as the two-hybrid system, protein chip, Mass Spectrometry, and the phage display have furnished a lot of data on protein-protein interactions (PPIs), but the data has not been accurate so far and the quantity has also been limited. In this respect, computational techniques for the prediction and validation of PPIs have been developed. However, existing computational methods do not take into account the fact that a PPI is actually originated from the interactions of domains that each protein contains. So, in this work, the information on domain modules of individual proteins has been employed in order to find out the protein interaction relationship. The system developed here, WASPI (Web-based Assistant System for Protein-protein interaction Inference), has been implemented to provide many functional insights into the protein interactions and their domains. To achieve those objectives, several preprocessing steps have been taken. First, the domain module information of interacting proteins was extracted by taking advantage of the InterPro database, which includes protein families, domains, and functional sites. The InterProScan program was used in this preprocess. Second, the homology comparison with the GO (Gene Ontology) and COG (Clusters of Orthologous Groups) with an E-value of $10^{-5}$, $10^{-3}$ respectively, was employed to obtain the information on the function and annotation of each interacting protein of a secondary PPI database in the WASPI. The BLAST program was utilized for the homology comparison.

Functional Genomic Approaches Using the Nematode Caenorhabditis elegans as a Model System

  • Lee, Jun-Ho;Nam, Seung-Hee;Hwang, Soon-Baek;Hong, Min-Gi;Kwon, Jae-Young;Joeng, Kyu-Sang;Im, Seol-Hee;Shim, Ji-Won;Park, Moon-Cheol
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.107-113
    • /
    • 2004
  • Since the completion of the genome project of the nematode C. elegans in 1998, functional genomic approaches have been applied to elucidate the gene and protein networks in this model organism. The recent completion of the whole genome of C. briggsae, a close sister species of C. elegans, now makes it possible to employ the comparative genomic approaches for identifying regulatory mechanisms that are conserved in these species and to make more precise annotation of the predicted genes. RNA interference (RNAi) screenings in C. elegans have been performed to screen the whole genome for the genes whose mutations give rise to specific phenotypes of interest. RNAi screens can also be used to identify genes that act genetically together with a gene of interest. Microarray experiments have been very useful in identifying genes that exhibit co-regulated expression profiles in given genetic or environmental conditions. Proteomic approaches also can be applied to the nematode, just as in other species whose genomes are known. With all these functional genomic tools, genetics will still remain an important tool for gene function studies in the post genome era. New breakthroughs in C. elegans biology, such as establishing a feasible gene knockout method, immortalized cell lines, or identifying viruses that can be used as vectors for introducing exogenous gene constructs into the worms, will augment the usage of this small organism for genome-wide biology.

GORank: Semantic Similarity Search for Gene Products using Gene Ontology (GORank: Gene Ontology를 이용한 유전자 산물의 의미적 유사성 검색)

  • Kim, Ki-Sung;Yoo, Sang-Won;Kim, Hyoung-Joo
    • Journal of KIISE:Databases
    • /
    • v.33 no.7
    • /
    • pp.682-692
    • /
    • 2006
  • Searching for gene products which have similar biological functions are crucial for bioinformatics. Modern day biological databases provide the functional description of gene products using Gene Ontology(GO). In this paper, we propose a technique for semantic similarity search for gene products using the GO annotation information. For this purpose, an information-theoretic measure for semantic similarity between gene products is defined. And an algorithm for semantic similarity search using this measure is proposed. We adapt Fagin's Threshold Algorithm to process the semantic similarity query as follows. First, we redefine the threshold for our measure. This is because our similarity function is not monotonic. Then cluster-skipping and the access ordering of the inverted index lists are proposed to reduce the number of disk accesses. Experiments with real GO and annotation data show that GORank is efficient and scalable.

Gene annotation by the "interactome"analysis in KEGG

  • Kanehisa, Minoru
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.56-58
    • /
    • 2000
  • Post-genomics may be defined in different ways depending on how one views the challenges after the genome. A popular view is to follow the concept of the central dogma in molecular biology, namely from genome to transcriptome to proteome. Projects are going on to analyze gene expression profiles both at the mRNA and protein levels and to catalog protein 3D structure families, which will no doubt help the understanding of information in the genome. However complete, such catalogs of genes, RNAs, and proteins only tell us about the building blocks of life. They do not tell us much about the wiring (interaction) of building blocks, which is essential for uncovering systemic functional behaviors of the cell or the organism. Thus, an alternative view of post-genomics is to go up from the molecular level to the cellular level, and to understand, what I call, the "interactome"or a complete picture of molecular interactions in the cell. KEGG (http://www.genome.ad.jp/kegg/) is our attempt to computerize current knowledge on various cellular processes as a collection of "generalized"protein-protein interaction networks, to develop new graph-based algorithms for predicting such networks from the genome information, and to actually reconstruct the interactomes for all the completely sequenced genomes and some partial genomes. During the reconstruction process, it becomes readily apparent that certain pathways and molecular complexes are present or absent in each organism, indicating modular structures of the interactome. In addition, the reconstruction uncovers missing components in an otherwise complete pathway or complex, which may result from misannotation of the genome or misrepresentation of the KEGG pathway. When combined with additional experimental data on protein-protein interactions, such as by yeast two-hybrid systems, the reconstruction possibly uncovers unknown partners for a particular pathway or complex. Thus, the reconstruction is tightly coupled with the annotation of individual genes, which is maintained in the GENES database in KEGG. We are also trying to expand our literature surrey to include in the GENES database most up-to-date information about gene functions.

  • PDF