• Title/Summary/Keyword: Function generator

Search Result 704, Processing Time 0.027 seconds

Synchronous Generator Protective Algorithm using Wavelet Transform of Fault Currents (고장전류의 웨이브릿 변환을 이용한 동기 발전기 보호 알고리즘)

  • Park, Chul-Won;Shin, Myong-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.834-840
    • /
    • 2007
  • A generator plays an important role in transferring an electric power to power system networks. The generator protection systems in Korea have been imported and operated through a tum-key from overseas entirely. Therefore, a study of the generator protection field has in urgent need for a stable operation of the imported goods, and for preparation of next generation protection system. The paper describes the fault detection algorithm using WT(Wave!et Transform) of currents for a generator protection. The fault current signals after executing a terminal fault modeling collect using a MA TLAB package, and calculate the wavelet coefficients through the process of a multi -level decomposition (MLD). The proposed algorithm for a fault detection using the Daubechies WT (wavelet transform) was executed with a C language for the command line function and for the real time realization after analyzing MATLAB's graphical interface. The advanced technique had complemented the defects of a DFT by applying a Daubechies WT. and had improved faster a speed and more accurate of fault discriminant than a conventional DFR.

Voltage Control of Generator using Neural Network Self Adaptative Control (신경망 자율 적응제어를 이용한 발전기의 전압제어)

  • Park, Wal-Seo;Oh, Hun;Yoo, Seok-Ju;La, Seong-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.103-107
    • /
    • 2009
  • PI controller is widely used as voltage control system of generator. However when a generator system has various characters of continuance, a new PI parameter decision for accurate control is a hard task as method of solving this problem, in this paper, the method to generator voltage control using Neural Network self adaptive control is presented. A property continuous feedback control gain of voltage control system is decided by a rule of delta learning. The function of proposed control method is verified by voltage control experiment results of DC generator.

The level control of Steam Generator in Nuclear Power Plant by Neural Network-PI Controller (PI-신경망 제어기를 이용한 원자력 발전소용 증기 발생기 수위제어)

  • 김동화
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.6-13
    • /
    • 1998
  • It is difficult to control for the level of the steam generator in the nuclear power plant because there is swell and shrink, and many disturbance such as, feed water rate, feedwater temperature, main steam flow rte, coolant temperature effect steam generator level. If the conventional PI controller use in this system, we cannot have a stability in the control of the lower power, the rejection function of disturbance, and the load following effectively. In this paper, e study the application of the of neural network based Kp, Ti for Pi controller to the level control of the steam generator of nuclear power plant through the simulation and experimental on the steam generator. We are satisfied with the resulting against the inturrupt of the disturbance, the change of setpoint through the simulation and the swell and shrink, the response of controller on the experimental steam generator.

  • PDF

An Algorithm for Generator Maintenance Scheduling Considering Transmission System (송전계통을 고려한 계통운용자의 발전기 예방정비계획 알고리즘에 관한 연구)

  • Han Seok-Man;Shin Young-Gyun;Kim Balho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.7
    • /
    • pp.352-357
    • /
    • 2005
  • In competitive electricity markets, the System Operator (SO) coordinates the overall maintenance schedules when the collective maintenance schedule reported to 50 by Gencos not satisfy the specified operating criteria, such as system reliability or supply adequacy. This paper presented a method that divides generator maintenance scheduling of the 50 into a master-problem and a sub-problem. Master-problem is schedule coordination and sub-problem is DC-optimal power flow. If sub-problem is infeasible, we use the algorithm of modifying operating criteria of master-problem. And, the 50 should use the open information only, because the information such as cost function of a generator and bidding Price is highly crucial for the strategies of profit maximization.

Introduction of Generator Unit Controller and Its Tuning for Automatic Generation Control in Korean Energy Management System (K-EMS)

  • Park, Min-Su;Chun, Yeong-Han
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.42-47
    • /
    • 2011
  • Automatic generation control (AGC) is an important function for load frequency control, which is being implemented in Energy Management System (EMS). A key feature of AGC is to back up governors to enhance the performance of frequency control. The governor regulates system frequency in several to ten seconds, while the droop control concept results in steady-state control error. AGC is a supplementary tool for compensation of the steady-state error caused by the droop setting of the governors. As the AGC target is delivered to each generator as an open loop control target, the generator output is not guaranteed to follow the AGC target. In this paper, we introduce generating unit controller (GUC) control block, which has the purpose of enabling the generator output to track the AGC target while maintaining the governor performance. We also address the tuning methods of GUC for better performance of AGC in the Korea Energy Management System (K-EMS).

Reliability Evaluation of Torque Generator (토크 발생기의 신뢰성 향상)

  • Jung, D.S.;Lee, Y.B.;Park, J.W.
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.59-65
    • /
    • 2012
  • Torque Generator is a product which has function to transform hydraulic energy to mechanical energy of torque and rotating speed, and be used for direction change device of agricultural machines. This study proposes failure analysis and test analysis on torque generator and introduces a process that reliability of a product is enhanced by design improvement. And also it presents improvements of maximum output torque by modifying design and surface treatment. Lastly it verifies reliability improvement by analyzing test results of before and after life test.

Design of FM sound synthesizer IC for multimedia with phase bit optimized (위상 데이터 비트수를 최적화한 멀티미디어용 FM 음원합성 IC의 설계)

  • 홍현석;김이섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.11
    • /
    • pp.2978-2990
    • /
    • 1996
  • With the advent of multimedia era, there are ever increasing interest in computer music and sound syntheis. An FM type sound synthesizing method makes possible the syntheis ofvarious sounds ofmusical instruments with a relatively simple hardware architecture. Therefore, in this paper, we designed a hardware architecture for real-time sound synthesizer and its logic gates. In this paper, we designed a basic sound generator for implementation of real-time logic gates, analzed characteristics of sounds synthesized in this architecture and extracted parameters of FM sounds of musical instruments by using the Csound software. The major bolkcs to build the hardware are a phase-generator, a singe-function-generator, an envelope-generator and a multiplier-part. Finally, logic circuits are designed and verified in VHDL and logic gates by 1.0um standard cell library, which will be easily implementable by the form of ASIC.

  • PDF

Comparison of superconducting generator with 2G HTS and MgB2 wires

  • Park, S.I.;Kim, J.H.;Le, T.D.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.48-52
    • /
    • 2013
  • This paper compares the features of second generation (2G) High Temperature Superconducting (HTS) field coil with those of magnesium diboride ($MgB_2$) field coil for a 10 MW class superconducting generator. Both coils can function effectively in their respective magnetic flux density range: 10-12 T for 2G HTS field coil, 2 T for $MgB_2$ superconducting field coil. Even though some leading researchers have been developing 10 MW class superconducting generator with 2G HTS field coil, other research groups have begun to focus on $MgB_2$ wire, which is more economical and suitable for mass production. However 2G HTS wire is still appealing in functions such as in-field property and critical temperature, it shows higher in-field property and critical temperature than $MgB_2$ wire.

Optimal Efficiency Control of Induction Generators in Wind Energy Conversion Systems using Support Vector Regression

  • Lee, Dong-Choon;Abo-Khalil, Ahmed. G.
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.345-353
    • /
    • 2008
  • In this paper, a novel loss minimization of an induction generator in wind energy generation systems is presented. The proposed algorithm is based on the flux level reduction, for which the generator d-axis current reference is estimated using support vector regression (SVR). Wind speed is employed as an input of the SVR and the samples of the generator d-axis current reference are used as output to train the SVR algorithm off-line. Data samples for wind speed and d-axis current are collected for the training process, which plots a relation of input and output. The predicted off-line function and the instantaneous wind speed are then used to determine the d-axis current reference. It is shown that the effect of loss minimization is more significant at low wind speed and the loss reduction is about to 40% at 4[m/s] wind speed. The validity of the proposed scheme has been verified by experimental results.

Generator Maintenance Scheduling of System Operator in Competitive Electricity Markets (경쟁적 전력시장에서 계통운용자의 발전기 예방정비계획에 관한 연구)

  • 한석만;신영균;정구형;김강원;김발호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.8
    • /
    • pp.477-483
    • /
    • 2004
  • In competitive electricity markets, maintenance schedule is submitted by generation companies (GENCOs) and transmission companies (TRANSCOs), and coordinated by Independent System Operator (ISO) with the adequacy criterion. This paper presents an alternative coordination procedure by ISO on the maintenance schedule. In this paper, it is focused on modeling a coordination algorithm by ISO for the maintenance schedule based on the Simulated Annealing algorithm. The proposed model employs the minimum information such as generator capacity, forced outage rate and generator maintenance schedules. The objective function of this model represents minimization of adjustment on schedules submitted by GENCOs.