• 제목/요약/키워드: Fume pipe

검색결과 8건 처리시간 0.025초

Assessment of Airborne Welding Fume Concentration for Some Manufacturing Industries in Busan

  • Cha, Min-Ho;Kim, Jeong-Won;Kim, Jong-Eun;Cho, Young-Ha;Moon, Deog-Hwan
    • 한국환경보건학회지
    • /
    • 제33권6호
    • /
    • pp.506-512
    • /
    • 2007
  • This study was conducted to describe the exposure levels of welding fumes by the type of manufacturers, work process, welding type and the size of manufacturers, and to find out the trend of chronological changes of airborne welding fume levels. The subjects of this study were 509 manufacturers, consisting of 11 types of manufacturers, 3 work processes, 7 welding types, in Busan from January, 1997 to December, 2005. Airborne concentration of welding fume was determined by manual of National Institute for Occupational Safety and Health (NIOSH), and the data were analyzed by using SPSS 10.0 for Windows program. The mean concentration of airborne welding fume in all manufacturers was $1.29\;mg/m^3$ (Range: $0.01{\sim}3.00\;mg/m^3)$. The level of welding fume was the highest, as $1.96\;mg/m^3$, for manufactures of motor vehicles, trailers and semi-trailers, which was lower than $5.0\;mg/m^3$ of 8 hr-TWA in Korean permissible exposure limit for welding fume. There was a significant difference in the mean levels of welding fumes by work process, showing the highest in welding workshop ($1.39\;mg/m^3$), followed by pipeline welding workshop ($1.26\;mg/m^3$) and engineering workshop ($1.20\;mg/m^3$). Among welding types, the mean level of welding fume was the highest in the type of $CO_2$ & arc welding, as $1.46\;mg/m^3$, followed by $CO_2$ welding ($1.40\;mg/m^3$), shielded metal arc welding ($1.31\;mg/m^3$), spot welding ($1.27\;mg/m^3$), and so on. The highest mean level of welding fume was $1.58\;mg/m^3$ in work process of pipe line welding workshop for the manufacturers of basic iron and steel, and $2.27\;mg/m^3$ in the type of arc welding for the manufactures building ship and boats. By the size of manufacturers, the mean concentration of welding fume for manufactures in small scale with less than 50 workers was the highest as $1.45\;mg/m^3$ (Range: $0.07{\sim}3.00\;mg/m^3)$. The mean level of welding fume was the highest as $1.39\;mg/m^3$ both in 1997 and in 2005, showing a trend of fluctuating periodically within a range of $1.10{\sim}1.39\;mg/m^3$. The above results suggested that more effective control program for work environment producing welding fumes should be developed and applied since there were significant variations in welding fume levels by the type of manufacturers, work processes, welding types, the size of manufactures, and by year.

가연성 배기덕트-흄 화재위험성 평가에 관한 연구 (A Study on the Fire Risk Assessment of Combustible Exhaust Duct-fume)

  • 윤여송;이영순
    • 한국안전학회지
    • /
    • 제25권1호
    • /
    • pp.32-37
    • /
    • 2010
  • When back-out & firing Process applies heat, hume is piled up in exhaust duct by organic compound and it have high dangerousness. There by, the process is happening a lot of damage that is exhaust duct fire. However we do not have certain fire dangerousness estimation and digestion countermeasure. So we need preventive measure. Back-out & firing is a process which has fine structure, electrical and mechanical characteristics, such as firing kiln and back-out kiln which has pipe line and box type. The box oven is made of heating coil, fan motor and control panel. Back-out & firing process has air circulation institution of quick ventilation type. When we operate this process for long time, fire can break out easily. Duct is made by zinc shredder. If fire breaks out in duct inside, fire by deposit fume can be dispersed easily. Accordinglym, This project estimate danger for back-out & firing process exhaust duct through real fire test. And there is purpose of study to establish preventive measure.

하이브리드 콘크리트 보수재료로 보수된 흄관의 휨 거동 평가 (An Evaluation of Flexural Behavior of Fume Pipe Repaired by Hybrid Concrete Repair Materials)

  • 유성원;최영철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권6호
    • /
    • pp.92-98
    • /
    • 2019
  • 본 연구에서는 기존콘크리트와의 부착성능 및 수밀성을 향상하기 위해 기존의 현장에서 사용하는 초속경 시멘트에 PVA 분말수지, 나일론 섬유를 혼입한 보수재료를 개발하고 개발된 보수재료로 보수된 흄관의 보수 후 휨거동 평가를 수행하였다. 주요 실험변수는 PVA 분말수지, 나일론 섬유 혼입률 및 손상유형이며, 성능 실험으로는 압축강도와 보수재료 후 휨거동평가를 수행하였으며 개발된 보수재료는 PVA 분말수지 혼입량이 증가할수록 압축강도가 감소하는 경향이 나타났으며, 모든 배합에서 보수재료의 요구 성능을 충분히 만족하는 것으로 나타났다. 보수된 관 시험체들의 휨강도 실험결과, 나일론 섬유를 혼입하고 PVA분말을 적정량을 첨가하여야 보수재료의 성능이 최대가 되는 것으로 나타났다. 모든 시험체들의 휨거동은 다소 철근비가 작은 구조부재에서 나타나는 휨거동 양상을 보이는 것으로 나타나, 국내의 흄관에 배근되는 철선량이 다소 부족함을 추정할 수 있었다. 즉, 철선의 배근량이 다소 적어 콘크리트와 철선의 거동이 극한상태에 도달하기 전에 콘크리트에 균열이 발생되고 곧바로 콘크리트의 인장강도를 초과하여 파괴되는 것을 확인할 수 있었다.

설비배관에서 용접봉에 따른 환경오염 (Environments Pollution Caused by Welding Rod in the Process of Pipe Working)

  • 윤영묵;이우람;이철구;김주한
    • 한국생산제조학회지
    • /
    • 제18권3호
    • /
    • pp.300-306
    • /
    • 2009
  • Welding technology is applicable in many kinds of fields, with the help of its advantages such as easy operational procedure and structural simplification. However, in the process of welding, hazardous materials and fumes cause huge fire broke-outs, explosions, and health-conscious problems. Also, as heavy metals in fumes have a harmful effect on the environment, recently, this has emerged as a urgent social issue. This study has been aimed at the recommendation of the most environment-friendly, among materials currently used in plumbing welding, and it has been done at the result of the analysis of amount, ingredient, and size in collected fumes created in the experiment of welding five rods to galvanized steel pipes and steel pipe ones. At the test result, due to the effect of Zn-coating, galvanized steel pipes, when welded to rods, created more fumes than steel pipe ones. In the mean time, when it comes to welding rods, among five, WR-03 produced fumes the least. Therefore, a combination of the test results clearly indicates that the case of welding WR-03 to cast-iron pipes turned out to be the most environment-friendly.

  • PDF

황동제 온간단조용 금형제작과 환경친화형 작업장 개선에 관한 연구 (A Research on the improvement scheme for manufacturing bronze warm forging die through environment-friendly workshop)

  • 김세환
    • 한국산학기술학회논문지
    • /
    • 제11권2호
    • /
    • pp.420-425
    • /
    • 2010
  • 온간단조(warm forging) 가공은 가공소재(Billet)를 $800^{\circ}C$ 정도로 가열하여 금형의 다이블록 임프레션(impression) 상면(上面)에 위치결정 시켜 단조하고 있는데, 이 단조가공 과정에서 산화스케일의 비산에 따른 작업자의 화상에 대한 위험도와 산화스케일이 다이블록의 임프레이션에 부착 되거나 열처리기술 미흡으로 금형수명(die life)을 단축시키며 다이블록 안에 분무하는 이형제는 유해먼지, 유해증기, 미스트, 퓸, 악취 등을 발생시켜 작업장 환경을 오염시킴으로써 직무기피 직종으로 분리되기 때문에 생산량 목표 달성에 큰 문제점으로 대두 되고 있다. 더욱이 다이블록의 임프레이션 마멸부위를 수리보수하기 위한 재생공법의 미흡으로 납기지연, 금형비 상승의 요인으로 나타나므로 이에 대한 재생공법 개선과 작업장의 공해물 제거장치의 개발이 요망되고 있다. 본 연구에서는 황동제 관 이음쇠의 온간단조가공에서 도출된 빌릿가열시 문제점, 금형재생 보수시 문제점, 제조원가의 상승요인 등을 외국의 기술과 비교하여 온간단조 금형제작방법개선, 금형재생보수공법 개선, 유해가스 제거장치를 도입하여 환경친화형 작업장 개선 등으로 문제점을 해결 하고자 하였다.

고성능 흄관 라이닝 재료 개발 (Development of High-Performance Lining Material for Fume Pipe)

  • 이윤수;주명기
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.391-394
    • /
    • 2003
  • Effects of the polymer-binder ratio and slag content on the properties of combined wet/dry-cured polymer-modified mortars using granulated blast-furnace slag are examined. Results shows that the flexural, compressive, tensile and adhesion in tension strengths of polymer-modified mortar using the slag tend to increase with increasing slag content, and is inclined to increase with increasing polymer-binder ratio. In particular, the polymer-modified mortars with slag content of 40% provide about 20% higher tensile strength than unmodified mortars. Such high strength development is attributed to the high tensile strength of polymer and the improved bond between cement hydrates and aggregates because of the addition of polymer.

  • PDF

Effect of Water Impingement Conditions on the Degradation of Epoxy Coatings in Tap Water

  • Kim, D.H.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제21권5호
    • /
    • pp.327-339
    • /
    • 2022
  • The water-jet technique started by Bridgman can cut metal and alloys without harmful gas and fume. However, while this technique is convenient to cut metals and alloys, in the case of coated pipe, water jet induces the degradation of coatings on the pipes, and may facilitate structural failure, leakage, and loss of products. While there are many reports on the effect of water jet on cut metals and the damage of metallic materials, research on the effect of water impingement on the epoxy coatings has been little studied. In this work, we therefore control the velocity of water jet, distance between nozzle and specimen, and water temperature, and discuss the effect of water impingement on the epoxy coatings. Increasing water velocity and water temperature and reducing nozzle distance increased the degradation rates of three epoxy coatings were increased. Among three test parameters - water velocity, nozzle distance and water temperature, water temperature was relatively effective to increase the degradation rate of epoxy coatings.

아스팔트 도로포장 작업자의 아스팔트 흄 및 다환방향족탄화수소 노출수준 평가 (Asphalt Fumes and Polycyclic Aromatic Hydrocarbons(PAHs) Exposure Assessment among Asphalt Road Paving Workers)

  • 박현희;황은송;김성호
    • 한국산업보건학회지
    • /
    • 제28권3호
    • /
    • pp.257-266
    • /
    • 2018
  • Objectives: The objective of this study was to evaluate asphalt fumes and PAHs exposure among asphalt road paving workers. Methods: Task-based personal air samplings(n=41) were carried out in 3 asphalt road paving construction sites using PTFE (polytetrafluorethylene) filters for asphalt fume and XAD-2 with glass fiber filters for PAHs. The concentration of fumes and PAHs were showed by four different job(paver finisher operator, paving laborer(raker), macadam roller operator and tire roller operator). Results: The geometric mean(GM) concentration of asphalt fumes as benzene soluble aerosol was highest at paving laborers($42.32{\mu}g/m^3$), followed by in order, paver finisher operators($41.57{\mu}g/m^3$), macadam roller operators($31.9{\mu}g/m^3$), and tire roller operators($30.31{\mu}g/m^3$). The GM of total PAHs concentration was highest at paver finisher operators($37.5{\mu}g/m^3$), followed by in order, paving laborers($20.13{\mu}g/m^3$), tire roller operators($8.66{\mu}g/m^3$), and macadam roller operators($6.23{\mu}g/m^3$). The results of the evaluation of 16 compounds of PAHs showed that the concentrations of naphthalene, achenaphthylene, achenaphthene, pyrene, fluorene and benz (a) anthracene was higher than those of other PAHs compounds and as the carcinogenic substances, benzo(a)pyrene, and debenz(a,h) anthracene were detected. The benzo(a)pyrene equivalent concentration(BaPeq) was $2.81{\mu}g/m^3$ at paver finisher operators, $2.07{\mu}g/m^3$ at paving laborers, $0.41{\mu}g/m^3$ at tire roller operators and $0.22{\mu}g/m^3$ at macadam roller operators. Asphalt road paving workers have higher benzo(a)pyrene equivalent(BaPeq) values even though at lower total PAHs concentration than workers in steel pipe coating and tar industry. Conclusions: Asphalt road paving workers were found to have risk of carcinogen exposure due to higher Benzo(a)pyrene equivalent concentration(BaPeq) than other PAHs exposure occupations. This study confirmed the carcinogenic hazards among asphalt paving workers.