• Title/Summary/Keyword: Fully-differential mode

Search Result 31, Processing Time 0.022 seconds

A low-Gain Error Amplifier for Common-Mode Feedback Circuit (Common Mode Feedback 회로를 위한 저 증폭도 에러증폭기)

  • 정근정;노정진
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.9
    • /
    • pp.714-723
    • /
    • 2003
  • An effective technique to increase the signal swing and reduce noise is to use fully-differential -circuits. However, design of a common-mode feedback (CMFB) circuit that stabilizes the common-mode output level is essential. In this paper, a general description is given to fully-differential amplifiers with their CMFB loops, then a new error amplifier that is just composed of transistors and stabilizes the DC output level is proposed. We designed a simple and efficient bias circuit that allows the stability and maximum input swing. Simulation result shows the enhanced phase margin and increased differential-mode input swing with a proposed error amplifier.

A Sigma-delta DAC with a Fully-Differential Current-Mode Semidigital Postfilter (완전차동 전류모드 준디지털 포스트필터를 사용하는 시그마-델타 DAC)

  • 김재완;민병무김수원
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.683-686
    • /
    • 1998
  • This paper introduces a sigma-delta DAC with a fully-differential current-mode semidigital IFIR postfilter. A proposed fully-differential postfilter exhibits not only an improved SNR(signal-to-noise ratio) but also a reduced opwer dissipation.

  • PDF

Design of A 3V CMOS Lowpass Filter Using the Improved Continuous-Time Fully-Differential Current-Mode Integrator (개선된 연속시간 Fully-Differential 전류모드 적분기를 이용한 3V CMOS 저역필터 설계)

  • 최규훈;방준호;조성익
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.685-695
    • /
    • 1997
  • In this paper, a new CMOS continuous-time fully-differential current-mode integrator is proposed as a basic building block of the low-voltage high frequency current-mode active filter. The proposed integrator is composed of the CMOS complementary circuit which can extend transconductance of an integrator. Therefore, the unity gain frequency which is determined by a small-signal transconductance and a MOSFET gate capacitance can be expanded by the complementary transconductance of the proposed integrator. And also the magnitude of pole and zero are increased. The unity gain frequency of the proposed integrator is increased about two times larger than that of the conventional continuous-time fully-differential integrator with NMOS-gm. These results are verified by the small signal analysis and the SPICE simulation. As an application circuit of the proposed fully-differential current-mode integrator, the three-pole Chebyshev lowpass filter is designed using 0.8.$\mu$m CMOS processing parameters. SPICE simulation predicts a 3-dB bandwidth of 148MHz and power dissipation of 4.3mW/pole for the three-pole filter with 3-V power supply.

  • PDF

A fully-differential bipolar current-controlled current amplifier(CCCA) (완전-차동형 바이폴라 전류-제어 전류 증폭기(CCCA))

  • 손창훈;임동빈;차형우
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.289-292
    • /
    • 2001
  • A Novel fully-differential bipolar current-controlled current amplifier(CCCA) for electrically tunable circuit design at current-mode signal processing were designed. The CCCA was consisted of fully-differential subtracter and fully-differential current gain amplifier. The simulation result shows that the CCCA has current input impedance of 0.5 Ω and a good linearity. The CCCA has 3-dB cutoff frequency of 20 MHz for the range over bias current 100$mutextrm{A}$ to 20 ㎃. The power dissipation is 3 mW.

  • PDF

Low-noise fast-response readout circuit to improve coincidence time resolution

  • Jiwoong Jung;Yong Choi;Seunghun Back;Jin Ho Jung;Sangwon Lee;Yeonkyeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1532-1537
    • /
    • 2024
  • Time-of-flight (TOF) PET detectors with fast-rise-time scintillators and fast-single photon time resolution silicon photomultiplier (SiPM) have been developed to improve the coincidence timing resolution (CTR) to sub-100 ps. The CTR can be further improved with an optimal bandwidth and minimized electronic noise in the readout circuit and this helps reduce the distortion of the fast signals generated from the TOF-PET detector. The purpose of this study was to develop an ultra-high frequency and fully-differential (UF-FD) readout circuit that minimizes distortion in the fast signals produced using TOF-PET detectors, and suppresses the impact of the electronic noise generated from the detector and front-end readout circuits. The proposed UF-FD readout circuit is composed of two differential amplifiers (time) and a current feedback operational amplifier (energy). The ultra-high frequency differential (7 GHz) amplifiers can reduce the common ground noise in the fully-differential mode and minimize the distortion in the fast signal. The CTR and energy resolution were measured to evaluate the performance of the UF-FD readout circuit. These results were compared with those obtained from a high-frequency and single ended readout circuit. The experiment results indicated that the UF-FD readout circuit proposed in this study could substantially improve the best achievable CTR of TOF-PET detectors.

A CMOS Op-amp Design of Improved Common Mode Feedback(CMFB) Circuit for High-frequency Filter Implementation (고주파용 필터구현을 위한 개선된 CMFB회로를 이용한 CMOS Op-amp 설계)

  • Lim, Dae-Sung;Choi, Young-Jae;Lee, Meung-Su;Kim, Dong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.479-482
    • /
    • 1993
  • A fully balanced differential amplifier can achieve high-gain wide-bandwidth characteristics. And also, Offset PSRR, CMRR and Noise performance of that are excellent, but these merits can be achieved only when the architecture holds fully balanced. Commonly, the fully balanced differential amplifier has a common mode feedback(CMFB) circuit in order to maintain the balance. This paper presents improved characteristics of the CMFB circuit and designs the wide-bandwidth CMOS Op-amp. The unity gain bandwidth of this Op-amp is 50MHz with the load capacitor 2pF, and the value of phase margin is $85^{\circ}$.

  • PDF

A Fully-Differential Correlated Doubling Sampling Readout Circuit for Mutual-capacitance Touch Screens

  • Kwon, Kihyun;Kim, Sung-Woo;Bien, Franklin;Kim, Jae Joon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.349-355
    • /
    • 2015
  • A fully-differential touch-screen sensing architecture is presented to improve noise immunity and also support most multi-touch events minimizing the number of amplifiers and their silicon area. A correlated double sampling function is incorporated to reduce DC offset and low-frequency noises, and a stabilizer circuit is also embedded to minimize inherent transient fluctuations. A prototype of the proposed readout circuit was fabricated in a $0.18{\mu}m$ CMOS process and its differential operation in response to various touch events was experimentally verified. With a 3.3 V supply, the current dissipation was 3.4 mA at normal operation and $140{\mu}A$ in standby mode.

Quadrature Oscillators with Grounded Capacitors and Resistors Using FDCCIIs

  • Horng, Jiun-Wei;Hou, Chun-Li;Chang, Chun-Ming;Chou, Hung-Pin;Lin, Chun-Ta;Wen, Yao-Hsin
    • ETRI Journal
    • /
    • v.28 no.4
    • /
    • pp.486-494
    • /
    • 2006
  • Two current-mode and/or voltage-mode quadrature oscillator circuits each using one fully-differential second-generation current conveyor (FDCCII), two grounded capacitors, and two (or three) grounded resistors are presented. In the proposed circuits, the current-mode quadrature signals have the advantage of high-output impedance. The oscillation conditions and oscillation frequencies are orthogonally (or independently) controllable. The current-mode and voltage-mode quadrature signals can be simultaneously obtained from the second proposed circuit. The use of only grounded capacitors and resistors makes the proposed circuits ideal for integrated circuit implementation. Simulation results are also included.

  • PDF

Design of Asynchronous Comparator for 1.2Gbps Signal Receiver (1.2 Gbps 신호 복원기를 위한 비동기 비교기의 설계)

  • 임병찬;권오경
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.137-140
    • /
    • 2001
  • This paper shows an asynchronous comparator circuit for 1.2Gbps signal receiver that converts 1.2Gbps data rate input signals with less than 100㎷ swing to on-chip CMOS compatible voltage levels in a 0.35${\mu}{\textrm}{m}$ CMOS process. Folded-cascode nMOS input stage with source-coupled pMOS input stage cover rail-to-rail input common-mode range. Drastic gain-bandwidth increment due to gain-boosting stage with positive-feedback latch as well as wide input common-mode range make designed circuit be suitable for a fully differential signal receiver. HSPICE simulation results show that worst-case sensitivity is less than 20㎷ and maximum propagation delay is 640-psec. And also we verified 3.97㎽ power consumption with 150㎷ differential swing amplitude at 1.2Gbps.

  • PDF