• Title/Summary/Keyword: Fully connected network

Search Result 145, Processing Time 0.034 seconds

Fast Spectral Inversion of the Strong Absorption Lines in the Solar Chromosphere Based on a Deep Learning Model

  • Lee, Kyoung-Sun;Chae, Jongchul;Park, Eunsu;Moon, Yong-Jae;Kwak, Hannah;Cho, Kyuhyun
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.46.3-47
    • /
    • 2021
  • Recently a multilayer spectral inversion (MLSI) model has been proposed to infer the physical parameters of plasmas in the solar chromosphere. The inversion solves a three-layer radiative transfer model using the strong absorption line profiles, H alpha and Ca II 8542 Å, taken by the Fast Imaging Solar Spectrograph (FISS). The model successfully provides the physical plasma parameters, such as source functions, Doppler velocities, and Doppler widths in the layers of the photosphere to the chromosphere. However, it is quite expensive to apply the MLSI to a huge number of line profiles. For example, the calculating time is an hour to several hours depending on the size of the scan raster. We apply deep neural network (DNN) to the inversion code to reduce the cost of calculating the physical parameters. We train the models using pairs of absorption line profiles from FISS and their 13 physical parameters (source functions, Doppler velocities, Doppler widths in the chromosphere, and the pre-determined parameters for the photosphere) calculated from the spectral inversion code for 49 scan rasters (~2,000,000 dataset) including quiet and active regions. We use fully connected dense layers for training the model. In addition, we utilize a skip connection to avoid a problem of vanishing gradients. We evaluate the model by comparing the pairs of absorption line profiles and their inverted physical parameters from other quiet and active regions. Our result shows that the deep learning model successfully reproduces physical parameter maps of a scan raster observation per second within 15% of mean absolute percentage error and the mean squared error of 0.3 to 0.003 depending on the parameters. Taking this advantage of high performance of the deep learning model, we plan to provide the physical parameter maps from the FISS observations to understand the chromospheric plasma conditions in various solar features.

  • PDF

DWT 기반 딥러닝 잡음소거기에서 웨이블릿 최적화 (Optimizing Wavelet in Noise Canceler by Deep Learning Based on DWT)

  • 정원석;이행우
    • 한국전자통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.113-118
    • /
    • 2024
  • 본 논문에서는 음향신호의 배경잡음을 소거하기 위한 시스템에서 최적의 wavelet을 제안한다. 이 시스템은 기존의 단구간 푸리에변환(STFT: Short Time Fourier Transform) 대신 이산 웨이블릿변환(DWT: Discrete Wavelet Transform)을 수행한 후 심층학습과정을 통하여 잡음소거 성능을 개선하였다. DWT는 다해상도 대역통과필터 기능을 하며 각 레벨에서 모 웨이블릿을 시간 이동시키고 크기를 스케일링한 여러 웨이블릿을 이용하여 변환 파라미터를 구한다. 여기서 음성을 분석하는데 가장 적합한 모(mother) 웨이블릿을 선정하기 위해 여러 웨이블릿에 대한 잡음소거 성능을 실험하였다. 본 연구에서 여러 웨이블릿에 대한 잡음소거시스템의 성능을 검증하기 위하여 Tensorflow와 Keras 라이브러리를 사용한 시뮬레이션 프로그램을 작성하고 가장 많이 사용되는 4개의 wavelet에 대해 모의실험을 수행하였다. 실험 결과, Haar 또는 Daubechies 웨이블릿을 사용하는 경우가 가장 우수한 잡음소거 성능을 나타냈으며 타 웨이블릿을 사용하는 경우보다 평균자승오차(MSE: Mean Square Error)가 크게 개선되는 것을 볼 수 있었다.

도로망 그래프의 우회도와 접근도 분석을 위한 GIS 응용 프로그램 개발 (Implementation of GIS-based Application Program for Circuity and Accessibility Analysis in Road Network Graph)

  • 이기원
    • 한국지리정보학회지
    • /
    • 제7권1호
    • /
    • pp.84-93
    • /
    • 2004
  • 최근 여러 전문 분야에서 GIS기반으로 구축된 다양한 공간주제정보의 활용 및 분석에 대한 수요가 증가하고 있다. 본 연구에서는 기본적인 도로 관련 레이어 정보를 이용하여 교통지리학적 분석이 가능한 GIS응용 프로그램을 구현하였다. 본 프로그램을 이용하여 행정 구역단위나 사용자가 임의로 설정한 분석 구역의 도로망으로부터 그래프 형의 망 구조에 대한 특성을 정량적으로 표현하는 우회도(circuity)와 접근도(accessibility)의 산정이 가능하다. 우회도는 분석 구역으로 설정된 구역에 존재하는 노드의 지위를 판단하기 위하여 하나의 바람직한 교통망을 기준으로 하여 실제 도로망을 구성하는 노드들이 어느 정도의 차이를 나타내는 가를 정량적으로 파악하기 위한 방법이며, 접근도는 우회도의 분석에 이용되는 같은 레이어 데이터인 그래프 망 구조에 대하여 망 구조에 포함된 모든 노드를 대상으로 하여 각각의 노드 들간의 접근의 용이성을 나타내고자 하는 개념이다. ArcView 3.2a의 개발언어인 AvenueTM를 이용하여,AVX 형식의 extension으로 구현된 프로그램 실행에 필요한 기본 데이터는 교통 데이터 모델에 기반하는 전문적인 교통 데이터베이스 정보를 필요로 하지 않고 수치지도로부터 쉽게 추출할 수 있는 도로 중심선 레이어와 행정 경계 레이어등을 이용할 수 있도록 하였다. 처리 결과로 얻어진 우회도와 접근도는 교통 분야에서 GIS 적용을 위한 공간 분석 방법으로 활용이 가능할 것으로 생각된다.

  • PDF

네트워크 환경에서의 몰입형 상호작용을 위한 딥러닝 기반 그룹 동기화 기법 (Deep Learning Based Group Synchronization for Networked Immersive Interactions)

  • 이중재
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권10호
    • /
    • pp.373-380
    • /
    • 2022
  • 본 논문에서는 네트워크 환경에서 원격사용자들의 몰입형 상호작용을 위한 딥러닝 기반의 그룹 동기화 기법을 제안한다. 그룹 동기화의 목적은 사용자의 몰입감을 높이기 위해서 모든 참여자가 동시에 상호작용이 가능하게 하는 것이다. 기존 방법은 시간 정확도를 향상을 위해 대부분 NTP(Network Time Protocol) 기반의 시간 동기화 방식에 초점이 맞추어져 있다. 동기화 서버에서는 미디어 재생 시간을 제어하기 위해 이동 평균 필터를 사용한다. 그 한 예로서, 지수 가중평균 방법은 입력 데이터의 변화가 크지 않으면 정확하게 재생 시간을 추종하고 예측하나 네트워크, 코덱, 시스템 상태의 급격한 변화가 있을 때는 안정화를 위해 더 많이 시간이 필요하다. 이런 문제점을 개선하기 위해서 데이터의 특성을 반영할 수 있는 딥러닝 기반의 그룹 동기화 기법인 DeepGroupSync를 제안한다. 제안한 딥러닝 모델은 시계열의 재생 지연 시간을 이용하여 최적의 재생 시간을 예측하는 두 개의 GRU(gated recurrent unit) 계층과 하나의 완전 연결 계층으로 구성된다. 실험에서는 기존의 지수 가중평균 기반 방법과 제안한 DeepGroupSync 방법에 대한 성능을 평가한다. 실험 결과로부터 예상하지 못한 급격한 네트워크 조건 변화에 대해서 제안한 방법이 기존 방법보다 더 강건함을 볼 수 있다.

ATM/B-ISDN 통신망 기반의 멀티미디어 원격의료 정보시스템을 위한 PC용 GUI 구현 (The Implementation of a PC GUI for a Multimedia Tele-Medical System based on ATM / B-ISDN)

  • 정연기;김영탁
    • 한국멀티미디어학회논문지
    • /
    • 제1권1호
    • /
    • pp.45-55
    • /
    • 1998
  • 원격의료정보 시스템에서는 멀티미디어 정보의 전송을 위한 광대역 통신망과 멀티미디어 원격 의료 정보를 쉽게 사용할 수 있게 하는 단말장치가 기본적으로 구성되어야 한다. 특히 멀티미디어 원격 의료정보 시스템의 단말기에는 의료진이 쉽게 사용할 수 있도록 병원의 기존 진료 절차와 거의 동일한 형태의 진료업무가 실행될 수 있는 멀티미디어 GUI 환경이 제공되어야 한다. 본 논문에서는 ATM/B-ISDN을 기반으로 한 멀티미디어 원격의료정보 시스템에서의 PC용 멀티미디어 원격진료 GUI(TeleMe야_GUI)를 구현하였다. ATM/B-ISDN 통신망 환경에서 워크스테이션을 멀티미디어 데이터베이스 서버로 두고, 각 의료진이 사용하는 PC의 TeleMe야_GUI에서 멀티미디어 진료 자료들을 원격 검색 할 수 있도록 하기 위한 클라이언트/서버간의 통신 프로토콜을 제안하였다. 이러한 ATM 통신망과 통신 프로토콜을 기반으로 하여 PC용 GUI를 구현하였다. 본 논문에서 제시하는 TeleMedi_GUI를 이용하면 의사는 X-ray/CT와 같은 영상정보나 X-ray 판독소견과 같은 음성정보를 이용하여 환자를 효율적으로 진료할 수 있다. 이 연구결과는 1차 진료기관과 2차 종합 진료기관간의 의료정보 서비스망으로 활용될 수 있으며, 병원 내부에서도 멀티미디어 진료시스템 개발에 활용될 수있다.

  • PDF

심층신경망과 천리안위성 2A호를 활용한 지상기온 추정에 관한 연구 (Estimation for Ground Air Temperature Using GEO-KOMPSAT-2A and Deep Neural Network)

  • 엄태윤;김광년;조용한;송근용;이윤정;이윤곤
    • 대한원격탐사학회지
    • /
    • 제39권2호
    • /
    • pp.207-221
    • /
    • 2023
  • 본 연구는 천리안위성 2A호의 Level 1B (L1B) 정보를 사용해 지상기온을 추정하기 위한 심층신경망(deep neural network, DNN) 기법을 적용하고 검증을 실시하였다. 지상기온은 지면으로부터 1.5 m 높이의 대기온도로 일상생활뿐만 아니라 폭염이나 한파와 같은 이슈에 밀접한 관련을 갖는다. 지상기온은 지표면 온도와 대기의 열 교환에 의해 결정되므로 위성으로부터 산출된 지표면 온도(land surface temperature, LST)를 이용한 지상기온 추정 연구가 활발하였다. 하지만 천리안위성 2A호 산출물 LST는 Level 2 정보로 구름영향이 없는 픽셀만 산출되는 한계가 있다. 따라서 본 연구에서는 Advanced Meteorological Imager 센서에서 측정된 원시데이터에 오직 복사와 위치보정을 마친 L1B 정보를 사용해 지상기온을 추정하기 위한 DNN 모델을 제시하고 그 성능을 가늠하기 위해 위성 LST와 지상관측 기온 사이의 선형회귀모델을 기준모델로 사용하였다. 연구기간은 2020년부터 2022년까지 3년으로 평가기간 2022년을 제외한 기간은 훈련기간으로 설정했다. 평가지표는 기상청의 종관기상관측소에서 정시에 관측된 기온정보로 평균 제곱근 오차를 사용하였다. 관측지점에서 추출된 픽셀 중 손실된 픽셀의 비율은 LST는 57.91%, L1B는 1.63%를 보였으며 LST의 비율이 낮은 이유는 구름의 영향 때문이다. 제안한 DNN의 구조는 16개 L1B 자료와 태양정보를 입력 받는 층과 은닉층 4개, 지상기온 1개를 출력하는 층으로 구성하였다. 연구결과 구름의 영향이 없는 경우 DNN 모델이 root mean square error (RMSE) 2.22℃로 기준모델의 RMSE 3.55℃ 보다 낮은 오차를 보였고, 흐린 조건을 포함한 총 RMSE는 3.34℃를 나타내면서 구름의 영향을 제거할 수 있을 것으로 보였다. 하지만 계절과 시간에 따른 분석결과 여름과 겨울철에 모델의 결정계수가 각각 0.51과 0.42로 매우 낮게 나타났고 일 변동의 분산이 0.11과 0.21로 나타났다. 가시채널을 고려해 태양 위치정보를 추가한 결과에서 결정계수가 0.67과 0.61로 개선되었고 시간에 따른 일 변동의 분산도 0.03과 0.1로 감소하면서 모든 계절과 시간대에 더 일반화된 모델을 생성할 수 있었다.

5G에서 V2X를 위한 End to End 모델 및 지연 성능 평가 (End to End Model and Delay Performance for V2X in 5G)

  • 배경율;이홍우
    • 지능정보연구
    • /
    • 제22권1호
    • /
    • pp.107-118
    • /
    • 2016
  • 2020년경 우리에게 모습을 보이게 될 5G 이동통신은 IoT, V2X 등을 비롯하여 다양한 서비스를 고객들에게 제공할 것으로 예상되며, 이러한 서비스를 제공하기 위한 요구사항은 꾸준히 수준을 높여오던 고속 데이터 속도 외에도, 신뢰도, 그리고 실시간 서비스를 위한 지연 감소 등이 가장 중요한 고려사항이 될 것으로 전망된다. 이러한 이유는 5G의 주요 응용분야로 고려되는 분야인 M2M, IoT, Factory 4.0 등의 서비스를 위해서는 기존의 속도뿐 아니라, 특히 지연 및 신뢰성이 매우 중요하게 고려되어야 한다. 특히, 교통관제 등 자동차를 기반으로 하는 다양한 V2X(Vehicle to X)를 활용한 지능형 교통관제 시스템 및 서비스에서는 요구사항이 가장 높은 수준으로 고려될 수 있다. 5G 이동통신을 위하여 세계 각국의 표준화 기구들은 서비스를 규정하고 이를 요구사항에 따라 그룹화하여, 서비스의 시나리오 와 기술적 요구사항을 도출하였고, 최근에는 이러한 시나리오를 위한 요구사항의 수준이 어느 정도 합의에 다다르고 있다. 도출된 서비스 시나리오는 5개이며 이는 다음과 같다. 첫 번째 시나리오는 빠른 데이터 전송이 필요한 서비스로 가상 사무공간의 3차원 정보의 전송을 위해 높은 품질의 데이터를 요구한다. 두 번째 시나리오는 운동장, 콘서트장, 백화점과 같이 군중이 몰린 곳에서도 합리적인 이동통신 광대역 서비스 제공하는 경우이며, 세 번째는 이동 중에 일정 수준의 서비스를 제공하는 경우이고, 네 번째 경우는 지연 및 신뢰도에 대한 매우 강한 요구사항을 갖는 경우이며, M2M 통신과 같이 실시간성 보안 및 산업을 위한 응용 등의 예가 해당된다. 마지막으로 다섯 번째는 유비퀴터스 통신의 예이며, 다양한 요구사항을 가진 많은 수의 디바이스에 대한 효과적인 조정하는 경우를 예로 들 수 있다. 5G 통신은 또한 차세대 망의 구조를 고려하여 SDN(Software Defined Network)기반의 구조를 채택하고 있는데, 이러한 망의 구조는 지연과 신뢰도와 밀접한 관계를 갖고, 최악조건의 경우를 위한 SDN을 고려한 망 구조측면의 검토가 필요하다. 다양한 요구사항 중 5G에서 가장 주요시 고려 되어야 할 지연 및 신뢰도에 가장 적합한 시나리오는 지능형 교통 시스템 및 서비스 환경에서의 응급상황이다. 자동차는 매우 빠른 속도로 5G의 작은 셀들을 지나가고, 응급상황에 전달해야 하는 메시지는 매우 짧은 시간에 전달 및 처리되어야 하는 시나리오로 지연에 민감한 최악조건의 대표적인 예라고 생각할 수 있다. 본 논문에서는 V2X의 응급상황에서 SDN 망 구조 및 정보흐름의 규모에 대한 시뮬레이션을 통하여 시스템 수준의 분석을 진행하였다.

온톨로지와 토픽모델링 기반 다차원 연계 지식맵 서비스 연구 (A Study on Ontology and Topic Modeling-based Multi-dimensional Knowledge Map Services)

  • 정한조
    • 지능정보연구
    • /
    • 제21권4호
    • /
    • pp.79-92
    • /
    • 2015
  • 미래 핵심 가치 기술 발굴 및 탐색을 위해서는 범국가적인 국가R&D정보와 과학기술정보의 연계 융합이 필요하다. 본 논문에서는 국가R&D정보와 과학기술정보를 온톨로지와 토픽모델링을 사용하여 연계 융합하여 지식베이스를 구축한 방법론을 소개하고, 이를 기반으로 한 다차원 연계 지식맵 서비스를 소개한다. 국가R&D정보는 국가R&D과제와 참여인력, 해당 과제에 대한 성과 정보, 논문, 특허, 연구보고서 정보들을 포함한다. 과학기술정보는 논문, 특허, 동향 등의 과학기술연구에 대한 기술 문서를 일컫는다. 본 논문에서는 지식베이스에서의 지식 처리 및 관리의 효율성을 높이기 위해 Lightweight 온톨로지를 사용한다. Lightweight 온톨로지는 국가R&D과제 참여자와 성과정보, 과학기술정보를 과제-성과 관계, 문서-저자 관계, 저자-소속기관 관계 등의 단순한 연관관계를 이용하여 국가R&D정보와 과학기술정보를 융합한다. 이러한 단순한 연관관계만을 이용함으로써 지식 처리의 효율성을 높이고 온톨로지 구축 과정을 자동화한다. 보다 구체적인 Concept 레벨에서의 온톨로지 구축을 위해 토픽모델링을 활용한다. 토픽모델링을 활용하여 국가R&D정보와 과학기술정보 문서들의 토픽 주제어를 추출하고 각 문서 간 연관관계를 추출한다. 일반적인 Concept 레벨에서의 Fully-Specified 온톨로지를 구축하기 위해서는 거의 100% 수동으로 해야 하기 때문에, 많은 시간과 비용이 소모된다. 본 연구에서는 이러한 수동적인 온톨로지 구축이 아닌 자동화된 온톨로지 구축을 위해 토픽모델링을 활용한다. 토픽모델링을 활용하여 온톨로지 구축에 필요한 문서와 토픽 키워드 간의 관계, 문서 간 의미 상 연관관계를 자동으로 추출한다. 마지막으로, 이와 같이 구축된 지식베이스의 트리플(Triple) 정보를 활용하여, 연구자들의 공동저자관계, 문서간의 공통주제어관계 등을 연구자, 주제어, 기관, 저널 등의 다차원 연관관계를 방사형 네트워크 형식을 이용하여 시각화한 지식맵 서비스들을 소개한다.

옵티컬 그리드 환경에서 DAG 계층화를 통한 스케줄링 알고리즘 (Scheduling Algorithm using DAG Leveling in Optical Grid Environment)

  • 윤완오;임현수;송인성;김지원;최상방
    • 전자공학회논문지CI
    • /
    • 제47권4호
    • /
    • pp.71-81
    • /
    • 2010
  • 그리드 시스템에서 리스트 스케줄링 기반의 알고리즘을 사용한 태스크 스케줄링은 프로세서의 완전 연결된 환경에서 낮은 시간 복잡도와 높은 효율성을 보여준다. 하지만 기존 알고리즘은 태스크 간의 통신비용 및 옵티컬 그리드 환경에서 통신이 이루어지는 경로인 lightpath의 구성 과정을 충분히 고려하지 않았다. 본 논문에서는 옵티컬 그리드 환경에 최적화 된 방향성 비순환 그래프(Directed Acyclic Graph, DAG)를 계층화하여 태스크의 할당 우선순위를 결정하는 계층화 선택 알고리즘인 LSOG(Leveling Selection in Optical Grid)을 제안한다. 이 알고리즘은 동일한 계층 내 태스크들의 할당 우선순위를 결정할 때 부모 태스크와 통신비용이 가장 큰 태스크를 먼저 수행한 뒤 각각의 네트워크에서 태스크 간의 통신이 이루어지는 가장 짧은 길이의 경로를 고려한다. 이 과정은 옵티컬 그리드 환경에서 링크 리소스 사용을 최적화하여 스케줄링 과정의 통신비용을 개선시킨다. 기존의 알고리즘 중 ELSA (Extended List Scheduling Algorithm)와 SCP (Scheduled Critical Path) 알고리즘을 LSOG 와 비교한 결과 CCR 값의 증가와 네트워크 환경이 원활함에 따라 전체 스케줄링 성능이 향상되는 것을 확인하였다.

딥러닝 알고리즘을 이용한 강우 발생시의 유량 추정에 관한 연구 (A study on discharge estimation for the event using a deep learning algorithm)

  • 송철민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.246-246
    • /
    • 2021
  • 본 연구는 강우 발생시 유량을 추정하는 것에 목적이 있다. 이를 위해 본 연구는 선행연구의 모형 개발방법론에서 벗어나 딥러닝 알고리즘 중 하나인 합성곱 신경망 (convolution neural network)과 수문학적 이미지 (hydrological image)를 이용하여 강우 발생시 유량을 추정하였다. 합성곱 신경망은 일반적으로 분류 문제 (classification)을 해결하기 위한 목적으로 개발되었기 때문에 불특정 연속변수인 유량을 모의하기에는 적합하지 않다. 이를 위해 본 연구에서는 합성곱 신경망의 완전 연결층 (Fully connected layer)를 개선하여 연속변수를 모의할 수 있도록 개선하였다. 대부분 합성곱 신경망은 RGB (red, green, blue) 사진 (photograph)을 이용하여 해당 사진이 나타내는 것을 예측하는 목적으로 사용하지만, 본 연구의 경우 일반 RGB 사진을 이용하여 유출량을 예측하는 것은 경험적 모형의 전제(독립변수와 종속변수의 관계)를 무너뜨리는 결과를 초래할 수 있다. 이를 위해 본 연구에서는 임의의 유역에 대해 2차원 공간에서 무차원의 수문학적 속성을 갖는 grid의 집합으로 정의되는 수문학적 이미지는 입력자료로 활용했다. 합성곱 신경망의 구조는 Convolution Layer와 Pulling Layer가 5회 반복하는 구조로 설정하고, 이후 Flatten Layer, 2개의 Dense Layer, 1개의 Batch Normalization Layer를 배열하고, 다시 1개의 Dense Layer가 이어지는 구조로 설계하였다. 마지막 Dense Layer의 활성화 함수는 분류모형에 이용되는 softmax 또는 sigmoid 함수를 대신하여 회귀모형에서 자주 사용되는 Linear 함수로 설정하였다. 이와 함께 각 층의 활성화 함수는 정규화 선형함수 (ReLu)를 이용하였으며, 모형의 학습 평가 및 검정을 판단하기 위해 MSE 및 MAE를 사용했다. 또한, 모형평가는 NSE와 RMSE를 이용하였다. 그 결과, 모형의 학습 평가에 대한 MSE는 11.629.8 m3/s에서 118.6 m3/s로, MAE는 25.4 m3/s에서 4.7 m3/s로 감소하였으며, 모형의 검정에 대한 MSE는 1,997.9 m3/s에서 527.9 m3/s로, MAE는 21.5 m3/s에서 9.4 m3/s로 감소한 것으로 나타났다. 또한, 모형평가를 위한 NSE는 0.7, RMSE는 27.0 m3/s로 나타나, 본 연구의 모형은 양호(moderate)한 것으로 판단하였다. 이에, 본 연구를 통해 제시된 방법론에 기반을 두어 CNN 모형 구조의 확장과 수문학적 이미지의 개선 또는 새로운 이미지 개발 등을 추진할 경우 모형의 예측 성능이 향상될 수 있는 여지가 있으며, 원격탐사 분야나, 위성 영상을 이용한 전 지구적 또는 광역 단위의 실시간 유량 모의 분야 등으로의 응용이 가능할 것으로 기대된다.

  • PDF