• 제목/요약/키워드: Fully connected

검색결과 336건 처리시간 0.021초

심층신경망 구조에 따른 구개인두부전증 환자 음성 인식 향상 연구 (A study on recognition improvement of velopharyngeal insufficiency patient's speech using various types of deep neural network)

  • 김민석;정재희;정보경;윤기무;배아라;김우일
    • 한국음향학회지
    • /
    • 제38권6호
    • /
    • pp.703-709
    • /
    • 2019
  • 본 논문에서는 구개인두부전증(VeloPharyngeal Insufficiency, VPI) 환자의 음성을 효과적으로 인식하기 위해 컨볼루션 신경망 (Convolutional Neural Network, CNN), 장단기 모델(Long Short Term Memory, LSTM) 구조 신경망을 은닉 마르코프 모델(Hidden Markov Model, HMM)과 결합한 하이브리드 구조의 음성 인식 시스템을 구축하고 모델 적응 기법을 적용하여, 기존 Gaussian Mixture Model(GMM-HMM), 완전 연결형 Deep Neural Network(DNN-HMM) 기반의 음성 인식 시스템과 성능을 비교한다. 정상인 화자가 PBW452단어를 발화한 데이터를 이용하여 초기 모델을 학습하고 정상인 화자의 VPI 모의 음성을 이용하여 화자 적응의 사전 모델을 생성한 후에 VPI 환자들의 음성으로 추가 적응 학습을 진행한다. VPI환자의 화자 적응 시에 CNN-HMM 기반 모델에서는 일부층만 적응 학습하고, LSTM-HMM 기반 모델의 경우에는 드롭 아웃 규제기법을 적용하여 성능을 관찰한 결과 기존 완전 연결형 DNN-HMM 인식기보다 3.68 % 향상된 음성 인식 성능을 나타낸다. 이러한 결과는 본 논문에서 제안하는 LSTM-HMM 기반의 하이브리드 음성 인식 기법이 많은 데이터를 확보하기 어려운 VPI 환자 음성에 대해 보다 향상된 인식률의 음성 인식 시스템을 구축하는데 효과적임을 입증한다.

전이학습 기반 CNN을 통한 풀림 방지 코팅 볼트 이진 분류에 관한 연구 (Binary classification of bolts with anti-loosening coating using transfer learning-based CNN)

  • 노은솔;이사랑;홍석무
    • 한국산학기술학회논문지
    • /
    • 제22권2호
    • /
    • pp.651-658
    • /
    • 2021
  • 풀림 방지 코팅 볼트는 주로 자동차 안전 관련 부품을 결합하는 데 사용되므로 안전성 유지를 위해 코팅 결함을 사전에 감지해야 한다. 이를 위해 이전 연구 [CNN 및 모델 시각화 기법을 사용한 코팅 볼트 불량 판별]에서는 합성곱 신경망을 사용했다. 이때 합성곱 신경망은 데이터 수가 많을수록 이미지 패턴 및 특성 분석 정확도가 증가하지만 그에 따라 학습시간이 증가한다. 또한 확보 가능한 코팅 볼트 샘플이 한정적이다. 본 연구에서는 이전 연구에 전이학습을 추가적으로 적용해 데이터 개수가 적은 경우에도 코팅 결함에 대해 정확한 분류를 하고자 한다. 전이학습을 적용할 때 학습 데이터 수와 사전 학습 데이터 ImageNet 간의 유사성을 고려해 분류층만 학습했다. 데이터 학습에는 전역 평균 풀링, 선형 서포트 벡터 머신 및 완전 연결 계층과 같은 분류층을 적용했으며, 고려한 모델 중 완전 연결 계층 방법의 분류층이 가장 높은 95% 정확도를 가진다. 추가적으로 마지막 합성곱층과 분류층을 미세 조정하면 정확도는 97%까지 향상된다. 전이학습 및 미세 조정을 이용하면 선별 정확도를 향상시킴은 물론 이전보다 학습 소요시간을 절반으로 줄일 수 있음을 보였다.

고해상도 단순 이미지의 객체 분류 학습모델 구현을 위한 개선된 CNN 알고리즘 연구 (Study of Improved CNN Algorithm for Object Classification Machine Learning of Simple High Resolution Image)

  • 이협건;김영운
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권1호
    • /
    • pp.41-49
    • /
    • 2023
  • CNN(Convolutional Neural Network) 알고리즘은 인공신경망 구현에 활용되는 대표적인 알고리즘으로 기존 FNN(Fully connected multi layered Neural Network)의 문제점인 연산의 급격한 증가와 낮은 객체 인식률을 개선하였다. 그러나 IT 기기들의 급격한 발달로 최근 출시된 스마트폰 및 태블릿의 카메라에 촬영되는 이미지들의 최대 해상도는 108MP로 약 1억 8백만 화소이다. 특히 CNN 알고리즘은 고해상도의 단순 이미지를 학습 및 처리에 많은 비용과 시간이 요구된다. 이에 본 논문에서는 고해상도 단순 이미지의 객체 분류 학습모델 구현을 위한 개선된 CNN 알고리즘을 제안한다. 제안하는 알고리즘은 고해상도의 이미지들의 학습모델 생성 시간을 감소하기 위해 CNN 알고리즘의 풀링계층의 Max Pooling 알고리즘 연산을 위한 인접 행렬 값을 변경한다. 변경한 행렬 값마다 4MP, 8MP, 12MP의 고해상도 이미지들의 처리할 수 있는 학습 모델들을 구현한다. 성능평가 결과, 제안하는 알고리즘의 학습 모델의 생성 시간은 12MP 기준 약 36.26%의 감소하고, 학습 모델의 객체 분류 정확도와 손실률은 기존 모델 대비 약 1% 이내로 오차 범위 안에 포함되어 크게 문제가 되지 않는다. 향후 본 연구에서 사용된 학습 데이터보다 다양한 이미지 종류 및 실제 사진으로 학습 모델을 구현한 실질적인 검증이 필요하다.

딥러닝 모델을 이용한 항공정사영상의 비닐하우스 탐지 (Detection of Plastic Greenhouses by Using Deep Learning Model for Aerial Orthoimages)

  • 윤병현;성선경;최재완
    • 대한원격탐사학회지
    • /
    • 제39권2호
    • /
    • pp.183-192
    • /
    • 2023
  • 위성영상 및 항공사진과 같은 원격탐사 자료들은 영상판독과 영상처리 기법을 통하여 영상 내의 객체를 탐지하고 추출하는 데에 사용될 수 있다. 특히, 원격탐사 자료의 해상도가 향상되고, 딥러닝(deep learning) 모델 등과 같은 기술의 발전으로 인하여 관심객체를 자동으로 추출하여 지도갱신 및 지형 모니터링 등에 활용될 수 있는 가능성이 증대되고 있다. 이를 위해, 본 연구에서는 의미론적 분할에 사용되는 대표적인 딥러닝 모델인 fully convolutional densely connected convolutional network (FC-DenseNet)을 기반으로 하여 항공정사영상 내 존재하는 비닐하우스를 추출하고, 이에 대한 결과를 정량적으로 평가하였다. 농림축산식품부의 팜맵(farm map)을 이용하여 담양, 밀양지역의 비닐하우스에 대한 레이블링을 수행하여 훈련자료를 생성하고, 훈련자료를 이용하여 FC-DenseNet의 훈련을 수행하였다. 원격탐사자료에 딥러닝 모델을 효과적으로 이용하기 위하여, 각 밴드별 특성이 유지되도록 instance norm을 이용하여 정규화과정을 수행하였으며, attention module을 추가하여 각 밴드별 가중치를 효과적으로 산정하였다. 실험결과, 딥러닝 모델을 이용하여 영상 내 존재하는 비닐하우스 지역을 효과적으로 추출할 수 있음을 확인하였으며 팜맵, 토지피복지도 등의 갱신에 활용될 수 있을 것으로 판단하였다.

트래커를 활용한 딥러닝 기반 실시간 전신 동작 복원 (Deep Learning-Based Motion Reconstruction Using Tracker Sensors)

  • 김현석;강경원;박강래;권태수
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제29권5호
    • /
    • pp.11-20
    • /
    • 2023
  • 본 논문에서는 손 동작을 포함한 전신 동작 생성이 가능하고 동작 생성 딜레이를 조절할 수 있는 새로운 딥러닝 기반 동작 복원 기술을 제안한다. 제안된 방법은 범용적으로 사용되는 센서인 바이브 트래커와 딥러닝 기술의 융합을 통해 더욱 정교한 동작 복원을 가능하게함과 동시에 IK 솔버(Inverse Kinematics solver)를 활용하여 발 미끄러짐 현상을 효과적으로 완화한다. 본 논문은 학습된 오토인코더(AutoEncoder)를 사용하여 트래커 데이터에 적절한 캐릭터 동작의 실시간 복원이 가능하고, 동작 복원 딜레이를 조절할 수 있는 방법을 제안한다. 복원된 전신 동작에 적합한 손 동작을 생성하기 위해 FCN(Fully Connected Network)을 사용하여 손 동작을 생성하고, 오토인코더에서 복원된 전신 동작과 FCN 에서 생성된 손 동작을 합쳐 손 동작이 포함된 캐릭터의 전신 동작을 생성할 수 있다. 앞서 딥러닝 기반의 방법으로 생성된 동작에서 발 미끄러짐 현상을 완화시키기 위해 본 논문에서는 IK 솔버 를 활용한다. 캐릭터의 발에 위치한 트래커를 IK 솔버의 엔드이펙터(end-effector)로 설정하여 캐릭터의 발 움직임을 정확하게 제어하고 보정하는 기술을 제안함으로써, 생성된 동작의 전반적인 정확성을 향상시켜 고품질의 동작을 생성한다. 실험을 통해, 본 논문에서 제안한 딥러닝 기반 동작 복원에서 정확한 동작 생성과 사용자 입력에 따라 프레임 딜레이 조정이 가능함을 검증하였고, 생성된 전신 동작의 발미끄러짐 현상에 대해 IK 솔버가 적용되기 이전 전신 동작과 비교하여 보정에 대한 성능을 확인하였다.

다변량 입력이 딥러닝 기반 저수율 예측에 미치는 영향 분석과 중장기 예측 방안 (Analyzing the Impact of Multivariate Inputs on Deep Learning-Based Reservoir Level Prediction and Approaches for Mid to Long-Term Forecasting)

  • 박혜승;윤종욱;이호준;양현호
    • 정보처리학회 논문지
    • /
    • 제13권4호
    • /
    • pp.199-207
    • /
    • 2024
  • 지역 저수지들은 농업용수 공급의 중요한 수원공으로 가뭄과 같은 극단적 기후 조건을 대비하여 안정적인 저수율 관리가 필수적이다. 저수율 예측은 국지적 강우와 같은 지역적 기후 특성뿐만 아니라 작부시기를 포함하는 계절적 요인 등에 크게 영향을 받기 때문에 적절한 예측 모델을 선정하는 것만큼 입/출력 데이터 간 상관관계 파악이 무엇보다 중요하다. 이에 본 연구에서는 1991년부터 2022년까지의 전라북도 400여 개 저수지의 광범위한 다변량 데이터를 활용하여 각 저수지의 복잡한 수문학·기후학적 환경요인을 포괄적으로 반영한 저수율 예측 모델을 학습 및 검증하고, 각 입력 특성이 저수율 예측 성능에 미치는 영향력을 분석하고자 한다. 신경망 구조에 따른 저수율 예측 성능 개선이 아닌 다변량의 입력 데이터와 예측 성능 간의 상관관계에 초점을 맞추기 위하여 실험에 사용된 예측 모델로 합성곱신경망 또는 순환신경망과 같은 복잡한 형태가 아닌 완전연결계층, 배치정규화, 드롭아웃, 활성화 함수 등의 조합으로 구성된 기본적인 순방향 신경망을 채택하였다. 추가적으로 대부분의 기존 연구에서는 하루 단위의 단기 예측 성능만을 제시하고 있으며 이러한 단기 예측 방식은 10일, 한 달 단위 등 중장기적 예측이 필요한 실무환경에 적합하지 않기 때문에, 본 연구에서는 하루 단위 예측값을 다음 입력으로 사용하는 재귀적 방식을 통해 최대 한 달 뒤 저수율 예측 성능을 측정하였다. 실험을 통해 예측 기간에 따른 성능 변화 양상을 파악하였으며, Ablation study를 바탕으로 예측 모델의 각 입력 특성이 전체 성능에 끼치는 영향을 분석하였다.

Improving Test Accuracy on the MNIST Dataset using a Simple CNN with Batch Normalization

  • Seungbin Lee;Jungsoo Rhee
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권9호
    • /
    • pp.1-7
    • /
    • 2024
  • 본 논문은 MNIST 데이터셋을 활용한 손글씨 숫자 인식에서 합성곱 신경망(CNN)과 배치정규화(BN)를 결합한 모델을 제안한다. LeCun et al.의 LeNet-5 모델의 성과를 뛰어넘는 것을 목표로 6계층 신경망 구조를 설계하였다. 제안된 모델은 28×28 픽셀 이미지를 입력으로 받아 합성곱, 맥스 풀링, 완전연결계층을 거쳐 처리하며, 특히 배치정규화계층을 도입하여 학습 안정성과 성능을 향상시켰다. 실험에서는 60,000개의 훈련 이미지와 10,000개의 테스트 이미지를 사용하였으며, Momentum 최적화 알고리즘을 적용하였다. 모델 구성에서는 30개의 필터, 필터 사이즈 5×5, 패딩 0, 스트라이드 1을 사용하였고, ReLU 활성화 함수를 채택하였다. 훈련 과정에서는 미니배치 사이즈 100, 총 20 에포크, 학습률 0.1로 설정하였다. 결과적으로 제안된 모델은 99.22%의 테스트 정확도를 달성하여 LeNet-5의 99.05%를 상회하였으며, F1-score 0.9919를 기록하여 모델의 성능을 입증하였다. 또한, 본 논문에서 제안한 6계층 모델은 LeCun et al.의 LeNet-5(7계층 모델)와 Ji, Chun and Kim(10계층 모델)이 제안한 모델보다 더 단순한 구조로 모델의 효율성을 강조하였다. 본 연구의 결과는 AI 비전 검사기 등 실제 산업 응용에서 활용 가능성을 보여주며, 특히 스마트팩토리에서 부품의 불량 상태를 판별하는 데 효과적으로 적용될 수 있을 것으로 기대된다.

직렬 및 병렬연결 멤리스터 회로의 전기적 특성 해석 (Analysis of Electrical Features of Serially and Parallelly connected Memristor Circuits)

  • 람 카지 부다토키;마헤스워 사;김주홍;김형석
    • 대한전자공학회논문지SD
    • /
    • 제49권5호
    • /
    • pp.1-9
    • /
    • 2012
  • 저항, 콘덴서, 및 인턱터와 함께 4의 회로 소자로 알려진 멤리스터가 개발되었으나, 아직 그 전기적 특성이 충분히 해석되지 않고 있다. 멤리스터들은 연결된 극성에 따라서 저항이 증가 혹은 감소하며, 직렬 혹은 병렬연결 형태에 따라서 그 동작 특성이 다양해진다. 본 연구에서는 HP의 $TiO_2$ 멤리스터를 모델로 하여 다양한 직 병렬회로에 대한 전기적 특성을 분석하였다. 이를 위해서 사인파 입력신호에 대해서 나타나는 전압-전류 간의 히스테르시스 루프의 다양한 모양을 분석하였다. 본 멤리스터 연구결과는 멤리스터 소자에 대한 특성 이해와 논리 회로 및 뉴런 셀에의 응용회로들의 특성을 분석하는데 유용하게 사용될 수 있다.

부분 중첩 안테나 배열 구조를 갖는 대용량 MIMO 시스템을 위한 하이브리드 프리코더 설계 (Hybrid Precoder Design for Massive MIMO Systems with OSA structure)

  • 서방원
    • 한국정보통신학회논문지
    • /
    • 제25권2호
    • /
    • pp.274-279
    • /
    • 2021
  • 일반적인 대용량 안테나 시스템은 RF 체인의 개수가 매우 많기 때문에, 구현 비용 및 복잡도가 크게 증가하는 단점이 있다. 이러한 문제를 해결하기 위하여 하이브리드 프리코더 설계 기법들이 제안되었으나, RF 체인이 모든 안테나에 연결되기 때문에, 여전히 구현 비용과 복잡도가 너무 높은 상태이다. 본 논문에서는 부분 중첩 안테나 구조를 갖는 대용량 MIMO 시스템을 고려하고 하이브리드 프리코더 설계 방법을 제안한다. 부분 중첩 구조에서는 RF 대역 아날로그 프리코딩 행렬의 많은 원소들이 0의 값을 갖는 듬성 행렬 형태를 갖는다. 이러한 듬성 행렬의 특성을 이용하여, GTP 기반의 RF 대역 아날로그 프리코딩 행렬 및 기저대역 디지털 프리코딩 행렬을 설계하는 방법을 제안한다. 모의실험을 통하여, 제안 기술이 일반적인 완전 연결 구조를 갖는 경우와 비교해서 20~30% 정도의 구현 복잡도를 가지고도, 완전 연결 구조의 85% 이상의 주파수 효율 성능을 갖는다는 것을 보인다.

바이오매스 합성가스 적용을 위한 LPG 엔진발전기 개조 및 성능평가 (Modification of an LPG Engine Generator for Biomass Syngas Application)

  • 엘리에젤 하비네자;홍성구
    • 한국농공학회논문집
    • /
    • 제64권5호
    • /
    • pp.9-16
    • /
    • 2022
  • Syngas, also known as synthesis gas, synthetic gas, or producer gas, is a combustible gas mixture generated when organic material (biomass) is heated in a gasifier with a limited airflow at a high temperature and elevated pressure. The present research was aimed at modifying the existing LPG engine generator for fully operated syngas. During this study, the designed gasifier-powered woodchip biomass was used for syngas production to generate power. A 6.0 kW LPG engine generator was modified and tested for operation on syngas. In the experiments, syngas and LPG fuels were tested as test fuels. For syngas production, 3 kg of dry woodchips were fed and burnt into the designed downdraft gasifier. The gasifier was connected to a blower coupled with a slider to help the air supply and control the ignition. The convection cooling system was connected to the syngas flow pipe for cooling the hot produce gas and filtering the impurities. For engine modification, a customized T-shaped flexible air/fuel mixture control device was designed for adjusting the correct stoichiometric air-fuel ratio ranging between 1:1.1 and 1.3 to match the combustion needs of the engine. The composition of produced syngas was analyzed using a gas analyzer and its composition was; 13~15 %, 10.2~13 %, 4.1~4.5 %, and 11.9~14.6 % for CO, H2, CH4, and CO2 respectively with a heating value range of 4.12~5.01 MJ/Nm3. The maximum peak power output generated from syngas and LPG was recorded using a clamp-on power meter and found to be 3,689 watts and 5,001 watts, respectively. The results found from the experiment show that the LPG engine generator operated on syngas can be adopted with a de-ration rate of 73.78 % compared to its regular operating fuel.