• Title/Summary/Keyword: Full-vehicle Dynamics Model

Search Result 63, Processing Time 0.023 seconds

A Study on the Development of Vehicle Dynamic Model for Dynamic Characteristics Analysis of Chassis Parts (샤시부품 동특성 해석을 위한 전차량 해석모델 개발에 관한 연구)

  • Bae, Chul-Yong;Kwon, Seong-Jin;Kim, Chan-Jung;Lee, Bong-Hyun;Na, Byung-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.958-966
    • /
    • 2007
  • This study presents full vehicle dynamics model for the dynamic characteristic analysis of chassis parts which are suspension and brake system. This vehicle dynamics model is appled to kinematics and quasi-static analysis for each chassis part. In order to develop the vehicle dynamics model, the parameters of each chassis element part which are bush, spring and damper are measured by experiment. Also the wheel forces and moments of 6 DOF are measured at each wheel center. These data are applied to input parameter for vehicle dynamics model. And the verification of the developed model is achieved to comparison with the experimental force data of spring, trailing arm and assist arm by using the load response by strain gauge. These experimental force data are acquired by road test at event surfaces of P/G which are belgian and chuck holes roads.

Three-Dimensional Dynamic Model of Full Vehicle (전차량의 3차원 동역학 모델)

  • Min, Kyung-Deuk;Kim, Young Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.162-172
    • /
    • 2014
  • A three-dimensional dynamic model for simulating various motions of full vehicle is presented. The model has 16 independent degrees of freedom (DOF) consisting of three kinds of components; a vehicle body of 6 DOF, 4 independent suspensions equipped at every corner of the body, and 4 tire models linked with each suspension. The dynamic equations are represented in six coordinate frames such as world fixed coordinate, vehicle fixed coordinate, and four wheel fixed coordinate frames. Then these lead to the approximated prediction model of vehicle posture. Both lateral and longitudinal dynamics can be computed simultaneously under the conditions of which various inputs including steering command, driving torque, gravity, rolling resistance of tire, aerodynamic resistance, etc. are considered. It is shown through simulations that the proposed 3D model can be useful for precise design and performance analysis of any full vehicle control systems.

Vehicle Dynamics Modeling and Correlation Using the Kinematic and Compliance Test of the Suspension (현가장치 기구정역학 시험에 의한 차량동역학 모델링 및 시험검증)

  • Kim Sangsup;Jung Hongkyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.109-118
    • /
    • 2005
  • A functional suspension model is proposed as a kinematic describing function of the suspension that represents the relative wheel displacement in polynomial form in terms of the vertical displacement of the wheel center and steering rack displacement. The relative velocity and acceleration of the wheel is represented in terms of first and second derivatives of the kinematic describing function. The system equations of motion for the full vehicle dynamic model are systematically derived by using velocity transformation method of multi-body dynamics. The comparison of field test results and simulation results of the ADAMS/Car demonstrates the validity of the proposed functional suspension modeling method. This model is suitable for real-time vehicle dynamics analysis.

A Symbolic Computation Method for Automatic Generation of a Full Vehicle Model Simulation Code for a Driving Simulator

  • Lee Ji-Young;Lee Woon-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.395-402
    • /
    • 2005
  • This paper deals with modeling and computer simulation of a full multibody vehicle model for a driving simulator. The multibody vehicle model is based on the recursive formulation and a corresponding simulation code is generated automatically from AUTOCODE, which is a symbolic computation package developed by the authors using MAPLE. The paper describes a procedure for automatically generating a highly efficient simulation code for the full vehicle model, while incorporating realistically modeled components. The following issues have been accounted for in the procedure, including software design for representing a mechanical system in symbolic form as a set of computer data objects, a multibody formulation for systems with various types of connections between bodies, automatic manipulation of symbolic expressions in the multibody formulation, interface design for allowing users to describe unconventional force-and torque-producing components, and a method for accommodating external computer subroutines that may have already been developed. The effectiveness and efficiency of the proposed method have been demonstrated by the simulation code developed and implemented for driving simulation.

DEVELOPMENT OF VEHICLE DYNAMICS MODEL FOR REAL-TIME ELECTRONIC CONTROL UNIT EVALUATION SYSTEM USING KINEMATIC AND COMPLIANCE TEST DATA

  • KIM S. S.;JUNG H. K.;SHIM J. S.;KIM C. W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.599-604
    • /
    • 2005
  • A functional suspension model is proposed as a kinematic describing function of the suspension, that represents the relative wheel displacement in polynomial form in terms of the vertical displacement of the wheel center and steering rack displacement. The relative velocity and acceleration of the wheel is represented in terms of first and second derivatives of the kinematic describing function. The system equations of motion for the full vehicle dynamic model are systematically derived by using velocity transformation method of multi-body dynamics. The comparison of test and simulation results demonstrates the validity of the proposed functional suspension modeling method. The model is computationally very efficient to achieve real-time simulation on TMS 320C6711 150 MHz DSP board of HILS (hardware-in-the-loop simulation) system for ECU (electronic control unit) evaluation of semi-active suspension.

Development of the Roller Rig for 1/5 Scaled Half Railway Vehicle to perform Running Stability Test (철도차량 주행안정성 시험용 축소형 반차체 주행시험기 개발)

  • Shin, Yu-Jeong;You, Won-Hee;Hur, Hyun-Moo;Park, Joon-Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.543-550
    • /
    • 2011
  • The development of railway vehicles such as new mechanism of railway vehicle or design parameters of suspension have been used the application of scaled roller rig to the study of railway vehicle dynamics. In this paper, the critical speed was compared between full scale and 1:5 scale of numerical model. And to verify the simulation results, the critical speed was confirmed using the 1:5 scaled roller rig. According to the results, we expect that the developed roller rig will be used in the study for the dynamic characteristics of railway vehicle.

Development of Real Time Multibody Vehicle Dynamics Software Part I : Real Time Vehicle Model based on Subsystem Synthesis Method (실시간 다물체 차량 동역학 소프트웨어 개발 Part Ⅰ: 부분시스템 합성방법에 의한 실시간 차량 모델)

  • Kim, Sung-Soo;Jeong, Wan-Hee;Lee, Chang-Ho;Jung, Do-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.162-168
    • /
    • 2009
  • The real-time multibody vehicle model based on the subsystem synthesis method has been developed. Suspension, anti roll bar, steering, and tire subsystem models have been developed for vehicle dynamics. The compliance effect from bush element has been considered using a quasi-static method to achieve the real time requirement. To validate the developed vehicle model, a quarter car and a full vehicle simulations have been carried out comparing simulation results with those from the ADAMS vehicle model. Real time capability has been also validated by measuring CPU time of the simulation results.

Steering Model for Vehicle Dynamic Analysis (차량 동력학 해석을 위한 조향장치 모델링)

  • Tak, Tae-Oh;Kim, Kum-Cheol;Yoon, Jung-Rak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.214-221
    • /
    • 1999
  • In this research, a power-assisted steering system is modeled as a part of a full vehicle dynamic model. The dynamic model of the steering system incorporates hydraulic and dynamic relations between major parts of a steering system, such as steering column, control valve, rack and pinion gear. Through an experimental setup of the steering system, the steering system model is validated. The steering model is included in a full vehicle dynamic model of a car, where kinematic relations between steering and suspension system are defined, and various simulations are performed to evaluate the performance of steering system in conjunction with overall dynamic performance of the vehicle.

  • PDF

Analysis of Race Car Handling Characteristics Using DADS in Initial Design Step (DADS를 이용한 초기 설계 단계에서의 경기용 차량의 핸들링 특성 해석)

  • Jang, Woon-Geun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.2
    • /
    • pp.71-82
    • /
    • 2008
  • In this study, 3 dimensional non-linear race car vehicle model including Chassis, steering and suspension systems were modeled by using Multi-Body Dynamics Simulation Program, DADS 9.5(Dynamic Analysis and Design System),which was used in kinematic and dynamic analysis. A full race car vehicle dynamics model using DADS program was presented and analysis was carried out to estimate the handling characteristics that may be very useful to design a race car in early design stage. The simulation of vehicle handling behavior for step steering input was simulated and compared with different design parameters: torsional stiffness of the front and rear anti roll bars, the motion ratio of the front and rear suspension system, the location of the tie rod joint, in multibody dynamic model. Therefore this simulation model before race car construction in early design step will be helpful for race car designer to save time and limited budget.

  • PDF

Preliminary Design and Development Framework of Railway Vehicle Simulator for Engineering Evaluation Analysis

  • Kim, Hong-Chan;Kim, Jeung-Tae
    • International Journal of Railway
    • /
    • v.4 no.1
    • /
    • pp.5-11
    • /
    • 2011
  • The purpose of the present study is to develop conceptual design of a railway vehicle simulator based on a scaled model. Although the scaled simulator is limited in its ability to manipulate the full dynamics of a full-size railway vehicle, it has been known to have an advantage in that it could provide means of testing the fundamental dynamic behavior within a limited laboratory space and at low operation cost. The present study proposes a design strategy for a simulator so that a small scaled roller rig could be fabricated and operated in laboratory setting based on the design philosophy. The data obtained from experimental testing using a scale model can be used to verify and interpret the dynamic performance of full-scale railway vehicle by applying appropriate non-dimensional analysis.