• Title/Summary/Keyword: Full-scale converter

Search Result 22, Processing Time 0.037 seconds

Feasibility Study of Tapped Inductor Filter Assisted Soft-Switching PWM DC-DC Power Converter

  • Moisseev S.;Sato S;Hamada S;Wakaoka M
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.231-234
    • /
    • 2003
  • This paper presents a novel high frequency transformer linked full-bridge type soft-switching phase-shift PWM control scheme DC-DC power converter, which can be used as power conditioner fur small-scale fuel cell power generation system. Using full-bridge soft-switching DC-DC converter topology makes possible to use low voltage high performance MOSFETs to achieve high efficiency of the power conditioner. A tapped inductor filter is implemented in the proposed soft-switching converter topology to achieve soft-switching PWM constant high frequency operation for a wide load variation range. to minimize circulating and idling currents without using additional resonant circuit and auxiliary power switching devices. The practical effectiveness of the proposed soft-switching DC-DC converter is verified in laboratory level experiment with 1 kW 100kHz breadboard setup using power MOSFETs. Actual efficiency of 94-96$\%$ is obtained for the wide load range

  • PDF

A Parallel Control of Full-bridge Converter for Fuel Cell Generation (연료전지 발전용 풀-브리지 컨버터의 병렬제어)

  • Na, Jae-Hyeong;Jang, Su-Jin;Park, Chan-Heung;Won, Chung-Yuen;Lee, Byoung-Kuk
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.235-240
    • /
    • 2007
  • A large power fuel cell generation system needs a parallel operation of de-de boost converter. Therefore, this paper proposed parallel operation algorithms of de-de boost converters for the large scale fuel cell generation system of 250[kW] and the operating principle along with the control method in detail. This paper uses a maximum current sharing method as a parallel operation method and also the phase shift full bridge de-de converter as a de-de boost converter. Simulation and experimental results on two prototype converter modules of 500W show that the parallel operation method can be applied to the 250[kW] power converter.

  • PDF

Implementation of Successive Approximate Register typed A/D Converter for a Monitored Battery Voltage Conversion (모니터링된 배터리 전압 변환을 위한 SAR typed A/D 컨버터의 제작)

  • Kim, Seong-Kweon;Lee, Kyung-Ryang;Yeo, Sung-Dae;Hong, Justin S.Y.;Park, Yong-Eun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.256-261
    • /
    • 2011
  • In this paper, a design and an implementation of an Analog to Digital (A/D) converter are introduced for the conversion of monitored battery cell voltage in the cell voltage monitoring(CVM) system in battery management system(BMS), which is one of the key devices of ECO hybrid cars. The A/D converter in CVM system required a middle conversion speed and a high resolution, therefore, a successive approximate register(SAR) typed A/D converter with 10 bits resolution has been designed and implemented using Magna 0.6um 40V process. The measurement result which kept ${\pm}1$ LSB accuracy in the full scale range(FSR) of 5V, showed the usefulness of the SAR typed A/D converter in realizing a CVM system.

Develoment of high-sensitivity wireless strain sensor for structural health monitoring

  • Jo, Hongki;Park, Jong-Woong;Spencer, B.F. Jr.;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.477-496
    • /
    • 2013
  • Due to their cost-effectiveness and ease of installation, wireless smart sensors (WSS) have received considerable recent attention for structural health monitoring of civil infrastructure. Though various wireless smart sensor networks (WSSN) have been successfully implemented for full-scale structural health monitoring (SHM) applications, monitoring of low-level ambient strain still remains a challenging problem for WSS due to A/D converter (ADC) resolution, inherent circuit noise, and the need for automatic operation. In this paper, the design and validation of high-precision strain sensor board for the Imote2 WSS platform and its application to SHM of a cable-stayed bridge are presented. By accurate and automated balancing of the Wheatstone bridge, signal amplification of up to 2507-times can be obtained, while keeping signal mean close to the center of the ADC span, which allows utilization of the full span of the ADC. For better applicability to SHM for real-world structures, temperature compensation and shunt calibration are also implemented. Moreover, the sensor board has been designed to accommodate a friction-type magnet strain sensor, in addition to traditional foil-type strain gages, facilitating fast and easy deployment. The wireless strain sensor board performance is verified through both laboratory-scale tests and deployment on a full-scale cable-stayed bridge.

A Study on a Single-Phase Module UPS using a Three-Arm Converter/Inverter

  • Choi Y.K.;Ko T.G.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.987-993
    • /
    • 2003
  • The module UPS can flexibly implement expansion of power system capacities. Furthermore, it can be used to build up the parallel redundant system to improve the reliability of power system operation. To realize the module UPS, load sharing without interconnection among parallel connecting modules as well as a small scale and lightweight topology is necessary. In this paper, the three-arm converter/inverter is compared with the general full-bridge and half-bridge topology from a practical point of view and chosen as the module UPS topology. The switching control approaches based on a pulse width modulation of the converter and inverter of the system are presented independently The frequency and voltage droop method is applied to parallel operation control to achieve load sharing. Two prototype 3kVA modules are designed and implemented to confirm the effectiveness of the proposed approaches. Experimental results show that the three-arm UPS system has a high power factor, a low distortion of output voltage and input current, and good load sharing characteristic.

  • PDF

Beta Gamma Survey Meter (베타 및 감마선 계측용 서어베이 미터)

  • 박인용;이병선
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 1971
  • A survey meter which is used a G-M counter sensitive to beta and gamma radiation is studied. This device is completely transistorized, operated with battery, and can be read directly the 3 full-scale meter range: 2.5, 25 and 250 MR/HR respectively. The collector-coupled monostabel multivibrator consisting of a counting-rate meter circuit, and the astable blocking oscillator consisting of a dc-de converter for power supply are analyzed and derived the design dquations. To improve the resolving time of the G-M counter the device is designed to be triggered by low pulse in the order of 0.5v.

  • PDF

A Study on a Single-Phase Module UPS using a Three-Arm Converter/Inverter

  • Koo, Tae-Geun;Byun, Young-Bok;Joe, Ki-Yeon;Kim, Dong-Hee;Kim, Chul-U
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.44-51
    • /
    • 2003
  • The module UPS can flexibly implement expansion of power system capacities. Further-more, it can be used to build up the parallel redundant system to improve the reliability of power system operation. To realize the module UPS, load sharing without interconnection among parallel connecting modules as well as a small scale and lightweight topology is necessary. In this paper, the three-arm converter/inverter is compared with the general full-bridge and half-bridge topology from a practical point of view and chosen as the module UPS topology. The switching control approaches based on a pulse width modulation of the converter and inverter of the system are presented independently. The frequency and voltage droop method is applied to parallel operation control to achieve load sharing. Two prototype 3㎸A modules are designed and implemented to confirm the effectiveness of the pro-posed approaches. Experimental results show that the three-arm UPS system has a high power factor, a low distortion of output voltage and input current, and good load sharing characteristics.

Hardware Simulator Development for a 3-Parallel Grid-Connected PMSG Wind Power System

  • Park, Ki-Woo;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.555-562
    • /
    • 2010
  • This paper presents the development of a hardware simulator for a 3-parallel grid-connected PMSG wind power system. With the development of permanent magnetic materials in recent years, the capacity of a PMSG based wind turbine system, which requires a full-scale power converter, has been raised up to a few MW. Since it is limited by the available semiconductor technology, such large amounts of power cannot be delivered with only one power converter. Hence, a parallel connecting technique for converters is required to reduce the ratings of the converters. In this paper, a hardware simulator with 3-parallel converters is described and its control issues are presented as well. Some experimental results are given to illustrate the performance of the simulator system.

15kW-class wave energy converter floater design and structural analysis

  • Singh, Patrick Mark;Chen, Zhenmu;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.146-151
    • /
    • 2016
  • This study concentrates on the design of floater for 15kW-class wave energy converter that extracts the ocean energy by oscillating vertically along the wave motion. The floater connects to a arm structure that connects to a hydraulic cylinder, which drives a hydraulic generator. The study mainly focuses on the structural analysis of the floater. Previous studies have been conducted using a miniature model; however, this study focuses on the size selection of the floater for a full scale model. Static structural analysis is conducted using fine numerical grids. Due to the complexity of the whole model, it is analyzed as a separate component. There are several load cases for each floater size, and they are analyzed thoroughly for stress (von-mises, shear, and normal) and deformation. The initial design was conducted by scaling up from the miniature model of the previous study, and the final design has been redesigned by changing the thickness and internal support structure shape.

Component structural analysis on 15kW class wave energy converter

  • Singh, Patrick Mark;Chen, Zhenmu;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.821-827
    • /
    • 2015
  • This study concentrates on a wave energy converter with floaters that extracts the ocean's energy by moving up and down with the wave motion. The floater is connected to an arm structure, including a hydraulic cylinder that drives a hydraulic generator. This study focuses on a structural analysis of the floater unit, including arm and cylinder components, platform and jack-up system, along with spud columns. Previous studies have been conducted for miniature models for experimentation, but this study focuses on the full-scale model structural analysis. Static structural analysis is conducted using fine numerical grids. Due to the complexity of the whole model, it is analyzed in separate pieces. The floater unit, with arm and cylinder, are combined into one system. The platform is analyzed separately as a single system. There are four jack-up systems for each spud column; only one jack-up system is analyzed, as uniform loads are assumed on each system. There are several load cases for each system, all of which are analyzed thoroughly for stress (von Mises, shear, and normal) and deformation. Acceptable results were obtained for most of the components; unsafe components were redesigned.