• Title/Summary/Keyword: Full-scale Static Test

Search Result 108, Processing Time 0.02 seconds

Evaluation of Static and Fatigue Performances of Decks Reinforced with GFRP Rebar for Reinfocement Ratio (GFRP 보강근으로 보강된 바닥판의 보강비에 따른 정적 및 피로성능 평가)

  • You, Young-Jun;Park, Young-Hwan;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.491-497
    • /
    • 2014
  • The corrosion of steel reinforcement in reinforced concrete bridge decks significantly affects the degradation of the capacity. Due to the advantageous characteristics such as high tensile strength and non-corrosive property, fiber reinforced polymer (FRP) has been gathering much interest from designers and engineers for possible usage as a alternative reinforcement for a steel reinforcing bar. However, its application has not been widespread, because there data for short- and long-term performance data of FRP reinforced concrete members are insufficient. In this paper, seven full-scale decks with dimensions of $4000{\times}3000{\times}240mm$ were prepared and tested to failure in the laboratory. The test parameter was the bottom reinforcement ratio in transverse direction. The decks were subjected to various levels of concentrated cyclic load with a contact area of $577{\times}231mm$ to simulate the vehicle loading of DB-24 truck wheel loads acting on the center span of the deck. It was observed that the glass FRP (GFRP) reinforced deck on a restraint girder is strongly effected to the level of the applied load rather than the bottom reinforcement ratio. The study results showed that the maximum load less than 58% of the maximum static load can be applied to the deck to resist a fatigue load of 2 million cycles. The fatigue life of the GFRP decks from this study showed the lower and higher fatigue performance than that of ordinary steel and CFRP rebar reinforced concrete deck. respectively.

Experimental and numerical investigation on flexural response of reinforced rubberized concrete beams using waste tire rubber

  • Memduh Karalar;Hakan Ozturk;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.43-57
    • /
    • 2023
  • The impacts of waste tire rubber (WTR) on the bending conduct of reinforced concrete beams (RCBs) are investigated in visualization of experimental tests and 3D finite element model (FEM) using both ANSYS and SAP2000. Several WTR rates are used in total 4 various full scale RCBs to observe the impact of WTR rate on the rupture and bending conduct of RCBs. For this purpose, the volumetric ratios (Vf) of WTR were chosen to change to 0%, 2.5%, 5% and 7.5% in the whole concrete. In relation to experimental test consequences, bending and rupture behaviors of the RCBs are observed. The best performance among the beams was observed in the beams with 2.5% WTR. Furthermore, as stated by test consequences, it is noticed that while WTR rate in the RCBs is improved, max. bending in the RCBs rises. For test consequences, it is clearly recognized as WTR rate in the RCB mixture is improved from 0% to 2.5%, deformation value in the RCB remarkably rises from 3.89 cm to 7.69 cm. This consequence is markedly recognized that WTR rates have a favorable result on deformation values in the RCBs. Furthermore, experimental tests are compared to 3D FEM consequences via using ANSYS software. In the ANSYS, special element types are formed and nonlinear multilinear misses plasticity material model and bilinear misses plasticity material model are chosen for concrete and compression and tension elements. As a consequence, it is noticed that each WTR rates in the RCBs mixture have dissimilar bending and rupture impacts on the RCBs. Then, to observe the impacts of WTR rate on the constructions under near-fault ground motions, a reinforced-concrete building was modelled via using SAP2000 software using 3-D model of the construction to complete nonlinear static analysis. Beam, column, steel haunch elements are modeled as nonlinear frame elements. Consequently, the seismic impacts of WTR rate on the lateral motions of each floor are obviously investigated particularly. Considering reduction in weight of structure and capacity of the members with using waste tire rubber, 2.5% of WTR resulted in the best performance while the construction is subjected to near fault earthquakes. Moreover, it is noticeably recognized that WTR rate has opposing influences on the seismic displacement behavior of the RC constructions.

Analysis of Plugging Effect for Open-ended Piles Based on Field Tests (현장시험을 통한 개단말뚝의 폐색효과에 대한 연구)

  • Ko, Jun-Young;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.12
    • /
    • pp.51-61
    • /
    • 2014
  • This paper presents an experimental study of the plugging effect on the capacity of open-ended piles installed in sandy soil. Full-scale tests, including dynamic and static axial-compression load tests, were carried out on three instrumented piles with different diameters (508.0, 711.2 and 914.4 mm). To measure the outer and inner shaft resistances acting on the piles, a double-walled system was utilized with instrumented strain gauges on the outside and inside walls of the pile. The results of field tests show that the inner shaft resistance was mostly mobilized at the location between the pile tip and 18-34% of the total plug length. It was found that the soil plugging in the lower portion has influence on the inner shaft resistance. In addition, it can be also demonstrated that the ratio of inner shaft resistance plus annulus load resistance to total resistance decreased with increasing pile diameters. The results of these tests show that the relationship between the degree of plugging and pile diameter is clearly established. Direct observations of the soil plugs were made and used to quantify both the plug length ratio (PLR) and the incremental filling ratio (IFR). Based on this result, it was found that the N value of the standard penetration test (SPT) is highly correlated with the IFR.

Comparative study on the performance of Pod type waterjet by experiment and computation

  • Kim, Moon-Chan;Park, Warn-Gyu;Chun, Ho-Hwan;Jung, Un-Hwa
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • A comparative study between a computation and an experiment has been conducted to predict the performance of a Pod type waterjet for cm amphibious wheeled vehicle. The Pod type waterjet has been chosen on the basis of the required specific speed of more than 2500. As the Pod type waterjet is an extreme type of axial flow type waterjet, theoretical as well as experimental works about Pod type waterjets are very rare. The main purpose of the present study is to validate and compare to the experimental results of the Pod type waterjet with the developed CFD in-house code based on the RANS equations. The developed code has been validated by comparing with the experimental results of the well-known turbine problem. The validation also extended to the flush type waterjet where the pressures along the duct surface and also velocities at nozzle area have been compared with experimental results. The Pod type waterjet has been designed and the performance of the designed waterjet system including duct, impeller and stator was analyzed by the previously mentioned m-house CFD Code. The pressure distributions and limiting streamlines on the blade surfaces were computed to confirm the performance of the designed waterjets. In addition, the torque and momentum were computed to find the entire efficiency and these were compared with the model test results. Measurements were taken of the flow rate at the nozzle exit, static pressure at the various sections along the duct and also the nozzle, revolution of the impeller, torque, thrust and towing forces at various advance speed's for the prediction of performance as well as for comparison with the computations. Based on these measurements, the performance was analyzed according to the ITTC96 standard analysis method. The full-scale effective and the delivered power of the wheeled vehicle were estimated for the prediction of the service speed. This paper emphasizes the confirmation of the ITTC96 analysis method and the developed analysis code for the design and analysis of the Pod type waterjet system.

Geotechnical Engineering Progress with the Incheon Bridge Project

  • Cho, Sung-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.133-144
    • /
    • 2009
  • Incheon Bridge, 18.4 km long sea-crossing bridge, will be opened to the traffic in October 2009 and this will be the new landmark of the gearing up north-east Asia as well as the largest & longest bridge of Korea. Incheon Bridge is the integrated set of several special featured bridges including a magnificent cable-stayed girder bridge which has a main span of 800 m width to cross the navigation channel in and out of the Port of Incheon. Incheon Bridge is making an epoch of long-span bridge designs thanks to the fully application of the AASHTO LRFD (load & resistance factor design) to both the superstructures and the substructures. A state-of-the-art of the geotechnologies which were applied to the Incheon Bridge construction project is introduced. The most Large-diameter drilled shafts were penetrated into the bedrock to support the colossal superstructures. The bearing capacity and deformational characteristics of the foundations were verified through the world's largest static pile load test. 8 full-scale pilot piles were tested in both offshore site and onshore area prior to the commencement of constructions. Compressible load beyond 30,000 tonf pressed a single 3 m diameter foundation pile by means of bi-directional loading method including the Osterberg cell techniques. Detailed site investigation to characterize the subsurface properties had been carried out. Geotextile tubes, tied sheet pile walls, and trestles were utilized to overcome the very large tidal difference between ebb and flow at the foreshore site. 44 circular-cell type dolphins surround the piers near the navigation channel to protect the bridge against the collision with aberrant vessels. Each dolphin structure consists of the flat sheet piled wall and infilled aggregates to absorb the collision impact. Geo-centrifugal tests were performed to evaluate the behavior of the dolphin in the seabed and to verify the numerical model for the design. Rip-rap embankments on the seabed are expected to prevent the scouring of the foundation. Prefabricated vertical drains, sand compaction piles, deep cement mixings, horizontal natural-fiber drains, and other subsidiary methods were used to improve the soft ground for the site of abutments, toll plazas, and access roads. Light-weight backfill using EPS blocks helps to reduce the earth pressure behind the abutment on the soft ground. Some kinds of reinforced earth like as MSE using geosynthetics were utilized for the ring wall of the abutment. Soil steel bridges made of corrugated steel plates and engineered backfills were constructed for the open-cut tunnel and the culvert. Diverse experiences of advanced designs and constructions from the Incheon Bridge project have been propagated by relevant engineers and it is strongly expected that significant achievements in geotechnical engineering through this project will contribute to the national development of the longspan bridge technologies remarkably.

  • PDF

Cyclic Testing of Bracket and WUF-B Type Weak-Axis Steel Moment Connections (브라켓 및 WUF-B 형식 철골모멘트골조 약축접합부 내진성능평가)

  • Lee, Kang Min;Jeong, Hee Taek;Yoon, Seok Ryong;Lee, Eun Mo;Oh, Kyung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.483-491
    • /
    • 2008
  • There has been much focus on the strong axis steel moment connections after the Northridge earthquake in 1994. However, research studieson the seismic behavior of weak axis moment connections could be hardly found despite the fact that these connection details have been frequently used as seismic details of MRF in Korea. Therefore, the objective of this research is to provide better knowledge on the seismic behavior of weak-axis steel moment connections, which can be widely applicable to many structures with similar characteristics. For this purpose, an experimental program was designed and performed with twotypes of weak-axis steel moment connections, namely the bracket type and WUF-B type, based on the survey of existing field data and literatures. Using the experimental results obtained from the quasi-static cyclic testing of these specimens, structural performances of the joints such as hysteretic curves, maximum strength capacities and the strain of reinforced bars were investigated. From the test results, the bracket-type connection was shown to have more than a 5% story drift capacity, compared with the WUF-B type connection's 4%. These specimens were also shown to have higher strength capacities than the nominal design strength. The bracket-type connection showed a slow strength degradation after maximum strength was researched. However,the WUF-B type connection showed a rapid strength degradation that caused brittle behavior.

Effect of the Pipe Joint on Structural Performance of a Single-span Greenhouse: A Full-scale Experimental and Numerical Study (파이프 이음부가 단동온실 구조성능에 미치는 영향: 실대형 실험적 및 해석적 연구)

  • Shin, Hyun Ho;Ryu, Hee Ryong;Yu, In Ho;Cho, Myeong Whan;Seo, Tae Cheol;Kim, Seung Yu;Choi, Man Kwon
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.410-418
    • /
    • 2021
  • This study was conducted in 8.2m wide single-span greenhouse to investigate the effect of presence or absence of rafter steel pipe joint and foundation conditions on greenhouse structural performance. Structural performance was evaluated by static loading test using the structural performance evaluation system for single-span greenhouse. The measured displacement was compared with the predicted result by numerical analysis. The displacement of each measurement location showed a significant difference regardless of the conditions of the foundation and presence or absence of rafter steel pipe joint. Compared to the hinge conditions, the difference in structural performance of the greenhouse in the fixed conditions was seen to be relatively large. The difference in structural performance according to presence or absence of rafter steel pipe joints, the lateral stiffness of the joint was 8.1% greater.

Behaviors of the High-profile Arch Soil-steel Structure During Construction (높은 아치형 지중강판 구조물의 시공 중 거동 분석)

  • 이종구;조성민;김경석;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.71-84
    • /
    • 2003
  • The metallic shell of soil-steel structures are so weak in bending moment that it should sustain the applied load by the interaction of the backfill soil around the structures. The shell can be subjected to excessive bending moment during side backfilling or under live-load when the soil cover is less than the minimum value. The current design code specifies the allowable deformation and Duncan(1979) and McGrath et al.(2001) suggested the strength analysis methods to limit the moments by the plastic capacity of the shell. However, the allowable deformation is an empirically determined value and the strength analysis methods are based on the results of FE analysis, hence the experimental verification is necessary. In this study, the full-scale tests were conducted on the high-profile arch to investigate its behaviors during backfilling and under static live-loads. Based on the measurements, the allowable deformation of the tested structure could be estimated to be 1.45% of rise, which is smaller than the specified allowable deformation. The comparison between the measurements and the results of two strength analyses indicate that Duncan underestimates the earth-load moment and overestimates the live-load moment, while McGrath et al. predicts both values close to the actual values. However, as the predicted factors of safeties using two methods coincide with the actual factor of safety, it can be concluded that both methods can predict the structural stability under live-loads adequately when the cover is less than the minimum.