• Title/Summary/Keyword: Full-CMOS

Search Result 188, Processing Time 0.027 seconds

Implementation of Excitatory CMOS Neuron Oscillator for Robot Motion Control Unit

  • Lu, Jing;Yang, Jing;Kim, Yong-Bin;Ayers, Joseph;Kim, Kyung Ki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.383-390
    • /
    • 2014
  • This paper presents an excitatory CMOS neuron oscillator circuit design, which can synchronize two neuron-bursting patterns. The excitatory CMOS neuron oscillator is composed of CMOS neurons and CMOS excitatory synapses. And the neurons and synapses are connected into a close loop. The CMOS neuron is based on the Hindmarsh-Rose (HR) neuron model and excitatory synapse is based on the chemical synapse model. In order to fabricate using a 0.18 um CMOS standard process technology with 1.8V compatible transistors, both time and amplitude scaling of HR neuron model is adopted. This full-chip integration minimizes the power consumption and circuit size, which is ideal for motion control unit of the proposed bio-mimetic micro-robot. The experimental results demonstrate that the proposed excitatory CMOS neuron oscillator performs the expected waveforms with scaled time and amplitude. The active silicon area of the fabricated chip is $1.1mm^2$ including I/O pads.

High Speed And Low Voltage Swing On-Chip BUS (고속 저전압 스윙 온 칩 버스)

  • Yang, Byeong-Do;Kim, Lee-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.2
    • /
    • pp.56-62
    • /
    • 2002
  • A new high speed and low voltage swing on-chip BUS using threshold voltage swing driver and dual sense amplifier receiver is proposed. The threshold voltage swing driver reduces the rising time in the bus to 30% of the full CMOS inverter driver and the dual sense amplifier receiver increases twice the throughput. of the conventional reduced-swing buses using sense amplifier receiver. With threshold voltage swing driver and dual sense amplifier receiver combined, approximately 60% speed improvement and 75% power reduction are achieved in the proposed scheme compared to the conventional full CMOS inverter for the on-chip bus.

Full CMOS Single Supply PLC SoC ASIC with Integrated Analog Front-End

  • Nam, Chul;Pu, Young-Gun;Kim, Sang-Woo;Lee, Kang-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.2
    • /
    • pp.85-90
    • /
    • 2009
  • This paper presents a single supply PLC SoC ASIC with a built-in analog Front-end circuit. To achieve the low power consumption along with low cost, this PLC SoC employs fully CMOS Analog Front End (AFE) and several LDO regulators (LDOs) to provide the internal power for Logic Core, DAC and Input/output Pad driver. The receiver part of the AFE consists of Pre-amplifier, Gain Amplifier and 1 bit Comparator. The transmitter part of the AFE consists of 10 bit Digital Analog Converter and Line Driver. This SoC is implemented with 0.18 ${\mu}m$ 1 Poly 5 Metal CMOS Process. The single supply voltage is 3.3 V and the internal powers are provided using LDOs. The total power consumption is below 30 mA at stand-by mode to meet the Eco-Design requirement. The die size is 3.2 $\times$ 2.8 $mm^{2}$.

CMOS Integrated Fingerprint Sensor Based on a Ridge Resistivity (CMOS공정으로 집적화된 저항형 지문센서)

  • Jung, Seung-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.571-574
    • /
    • 2008
  • In this paper, we propose $256{\times}256$ pixel array fingerprint sensor with an advanced circuits for detecting. The pixel level simple detection circuit converts from a small and variable sensing current to binary voltage out effectively. We minimizes an electrostatic discharge(ESD) influence by applying an effective isolation structure. The sensor circuit blocks were designed and simulated in standard CMOS $0.35{\mu}m$ process. Full custom layout is performed in the unit sensor pixel and auto placement and routing is performed in the full chip.

  • PDF

Design of an Integrated Circuit for Controlling the Printer Head Ink Nozzle (프린터 헤드 노즐분사 제어용 집적회로설계)

  • 정승민;김정태;이문기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.798-804
    • /
    • 2003
  • In this paper, We have designed an advanced circuits for controlling the Ink Nozzle of Printer Head We can fully increase the number of nozzle by reducing the number of Input/Output PADs using the proposed new circuit. The proposed circuit is tested with only 20 nozzles to evaluate functional test using FPGA sample chip. The new circuit architecture can be estimated. Full circuit for controlling 320 nozzles was designed and simulated from ASIC full custom methodology, then the circuit was fabricated by applying 3${\mu}{\textrm}{m}$ CMOS process design rule.

A Low-Voltage Vibrational Energy Harvesting Full-Wave Rectifier using Body-Bias Technique (Body-Bias Technique을 이용한 저전압 진동에너지 하베스팅 전파정류회로)

  • Park, Keun-Yeol;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.425-428
    • /
    • 2017
  • This paper describes a full-wave rectifiers for energy harvesting circuit using a vibrational energy. The designed circuit is applied to the negative voltage converter with the body-bias technique using the Beta-multiplier so that the power efficiency is excellent even at the low voltage, and the comparator is designed as the bulk-driven type. The proposed circuit is designed with $0.35{\mu}m$ CMOS process, and The designed chip occupies $931{\mu}m{\times}785{\mu}m$.

  • PDF

CMOS Rectifier for Wireless Power Transmission Using Multiplier Configuration (Multiplier 설정을 통한 무선 전력 전송 용 CMOS 정류 회로)

  • Jeong, Nam Hwi;Bae, Yoon Jae;Cho, Choon Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.56-62
    • /
    • 2013
  • We present a rectifier for wireless power transmission using multiplier configuration in layout for MOSFETs which works at 13.56 MHz, designed to fit in CMOS process where conventionally used diodes are replaced with the cross-coupled MOSFETs. Full bridge rectifier structure without comparators is employed to reduce current consumption and to be working up to higher frequency. Multiplier configuration designed in layout reduces time delay originated from parasitic series resistance and shunt capacitance at each finger due to long connecting layout, leading to fast transition from on-state to off-state cross-coupled circuit structure and vice versa. The power conversion efficiency is significantly increased due to this fast transition time. The rectifier is fabricated in $0.11{\mu}m$ CMOS process, RF to DC power conversion efficiency is measured as 86.4% at the peak, and this good efficiency is maintained up to 600 MHz, which is, to our best knowledge, the highest frequency based on cross-coupled configuration.

Full CMOS PLC SoC ASIC with Integrated AFE (Analog Frond-End 내장형 전력선 통신용 CMOS SoC ASIC)

  • Nam, Chul;Pu, Young-Gun;Park, Joon-Sung;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.10
    • /
    • pp.31-39
    • /
    • 2009
  • This paper presents the single supply power line communication(PLC) SoC ASIC with built-in analog frond-end circuit. To achieve the low power consumption along with low chip cost, this PLC SoC ASIC employs fully CMOS analog front-end(AFE) and several built-in Regulators(LDOs) powering for Core logic, ADC, DAC and IP Pad driver. The AFE includes RX of pre-amplifier, Programmable gain amplifier and 10 bit ADC and TX of 10bit Digital Analog Converter and Line driver. This PLC Soc was implemented with 0.18um 1 Poly 5 Metal CMOS process. The single power supply of 3.3V is required for the internal LDOs. The total power consumption is below 30mA at standby and 300mA at active which meets the eco-design requirement. The chips size is $3.686\;{\times}\;2.633\;mm^2$.

The Design of A 1.9 GHz CMOS RF Bandpass Amplifier (1.9GHz CMOS RF 대역통과 증폭기의 설계)

  • 류재우;주홍일유상
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1121-1124
    • /
    • 1998
  • A CMOS RF bandpass amplifier which performs both functions of low-noise amplifier and bandpass filter is designed for the application of 1.9 ㎓ RF front-end in wireless receivers. The positive-feedback Q-enhancement technique is used to overcome the low gain and low Q factor of the bandpass amplifier. The designed bandpass amplifier is simulated with HSPICE and fabricated using HYUNDAI $0.8\mu\textrm{m}$ CMOS 2-poly 2-metal full custom process. Under 3 V supply voltage, results of simulation show that the CMOS bandpass amplifier provides the power gain 23dB, noise figure 3.8 dB, and power dissipation 55mW.

  • PDF

Divided Generation Algorithm of Universal Test Set for Digital CMOS VLSI (디지털 CMOS VLSI의 범용 Test Set 분할 생성 알고리듬)

  • Dong Wook Kim
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.11
    • /
    • pp.140-148
    • /
    • 1993
  • High Integration ratio of CMOS circuits incredily increases the test cost during the design and fabrication processes because of the FET fault(Stuck-on faults and Stuck-off faults) which are due to the operational characteristics of CMOS circuits. This paper proposes a test generation algorithm for an arbitrarily large CMOS circuit, which can unify the test steps during the design and fabrication procedure and be applied to both static and dynaic circuits. This algorithm uses the logic equations set for the subroutines resulted from arbitrarily dividing the full circuit hierarchically or horizontally. Also it involves a driving procedure from output stage to input stage, in which to drive a test set corresponding to a subcircuit, only the subcircuits connected to that to be driven are used as the driving resource. With this algorithm the test cost for the large circuit such as VLSI can be reduced very much.

  • PDF