• 제목/요약/키워드: Full security

Search Result 298, Processing Time 0.034 seconds

스마트폰 백업 데이터 획득 연구 동향

  • Park, Myungseo;Kim, Jongsung
    • Review of KIISC
    • /
    • v.28 no.5
    • /
    • pp.5-8
    • /
    • 2018
  • 현대인에게 필수적인 스마트폰에는 통화기록, 문자 메시지, 이메일과 같은 사용자 개인 정보뿐 아니라 사진, 동영상, 문서 등과 같은 미디어 파일이 저장된다. 이러한 스마트폰 데이터는 포렌식 수사 입장에서 중요한 증거로써 사용될 수 있기 때문에 필수적으로 획득해야 하는 데이터이다. 하지만, 스마트폰의 꾸준한 업데이트와 FDE (Full Disk Encryption), FBE(File Based Encryption)과 같은 암호 기능의 적용으로 인해 스마트폰에서 사용자 데이터를 추출하는데 어려움이 있다. 이에 따라 스마트폰에서 사용자 데이터를 추출하는 연구가 지속적으로 수행되고 있으며, 본 논문에서는 그 중 하나인 백업 데이터에서 스마트폰의 데이터를 획득하는 연구 동향에 대해 설명한다.

Multi-target Tracking Filters and Data Association: A Survey (다중표적 추적필터와 자료연관 기법동향)

  • Song, Taek Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.313-322
    • /
    • 2014
  • This paper is to survey and put in perspective the working methods of multi-target tracking in clutter. This paper includes theories and practices for data association and related filter structures and is motivated by increasing interest in the area of target tracking, security, surveillance, and multi-sensor data fusion. It is hoped that it will be useful in view of taking into consideration a full understanding of existing techniques before using them in practice.

안드로이드 FDE·FBE 복호화 연구 동향

  • Seo, Seunghee;Lee, Changhoon
    • Review of KIISC
    • /
    • v.29 no.6
    • /
    • pp.5-12
    • /
    • 2019
  • Full Disk Encryption(FDE)과 File Based Encryption(FBE)는 파일 디스크를 암호화하는 방식으로 안드로이드에서는 연락처, 문자 등의 사용자 데이터가 저장되는 데이터 파티션(/data)에 적용된다. FDE는 파티션 전체를 하나의 키로 암호화하는 방식이나 FBE는 2개 이상의 키로 파티션을 나누어 암호화한다. 이러한 FDE와 FBE는 기기 분실 및 도난 시 개인 정보 유출 피해를 방지할 수 있으나, 디지털 포렌식 수사 과정에서 증거 데이터 수집 및 분석을 어렵게 한다. 따라서 디지털 포렌식 관점의 FDE. FBE 분석 및 복호 방안에 관한 연구가 필요하다. 본 논문은 기존 FDE와 FBE의 복호 및 안전성 연구를 정리하고, 매년 FBE FDE가 보완되어 탑재되는 새로운 안드로이드 버전에 발맞춘 꾸준한 분석의 필요성을 시사한다.

Danger Element Analysis and Protocol Design of Electronic Cash Payment System (전자화폐지불시스템의 위험요소 분석 및 프로토콜 설계)

  • 허철회;조성진;정환묵
    • The Journal of Society for e-Business Studies
    • /
    • v.4 no.1
    • /
    • pp.103-115
    • /
    • 1999
  • The electronic cash, an electronic equivalent of the real paper money, has been recently proposed as one of the various payment methods for electronic commerce. In this paper, we design an electronic cash payment system based on a new electronic cash payment protocol that can effectively provide full anonymity and avoid double-spending. The protocol is suitable for use as the electronic cash control or electronic cash database. The protocol support also security and electronic cash property.

  • PDF

A LSB-based Efficient Selective Encryption of Fingerprint Images for Embedded Processors (임베디드 프로세서에 적합한 LSB 기반 지문영상의 효율적인 부분 암호화 방법)

  • Moon, Dae-Sung;Chung, Yong-Wha;Pan, Sung-Bum;Moon, Ki-Young;Kim, Ju-Man
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.10
    • /
    • pp.1304-1313
    • /
    • 2006
  • Biometric-based authentication can provide strong security guarantee about the identity of users. However, security of biometric data is particularly important as the compromise of the data will be permanent. In this paper, we propose a secure and efficient protocol to transmit fingerprint images from a fingerprint sensor to a client by exploiting characteristics of fingerprint images. Because the fingerprint sensor is computationally limited, however, such encryption algorithm may not be applied to the full fingerprint images in real-time. To reduce the computational workload on the resource-constrained sensor, we apply the encryption algorithm to a specific bitplane of each pixel of the fingerprint image. We use the LSB as specific bitplane instead of MSB used to encrypt general multimedia contents because simple attacks can reveal the fingerprint ridge information even from the MSB-based encryption. Based on the experimental results, our proposed algorithm can reduce the execution time of the full encryption by a factor of six and guarantee both the integrity and the confidentiality without any leakage of the ridge information.

  • PDF

White-Box AES Implementation Revisited

  • Baek, Chung Hun;Cheon, Jung Hee;Hong, Hyunsook
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.273-287
    • /
    • 2016
  • White-box cryptography presented by Chow et al. is an obfuscation technique for protecting secret keys in software implementations even if an adversary has full access to the implementation of the encryption algorithm and full control over its execution platforms. Despite its practical importance, progress has not been substantial. In fact, it is repeated that as a proposal for a white-box implementation is reported, an attack of lower complexity is soon announced. This is mainly because most cryptanalytic methods target specific implementations, and there is no general attack tool for white-box cryptography. In this paper, we present an analytic toolbox on white-box implementations of the Chow et al.'s style using lookup tables. According to our toolbox, for a substitution-linear transformation cipher on n bits with S-boxes on m bits, the complexity for recovering the $$O\((3n/max(m_Q,m))2^{3max(m_Q,m)}+2min\{(n/m)L^{m+3}2^{2m},\;(n/m)L^32^{3m}+n{\log}L{\cdot}2^{L/2}\}\)$$, where $m_Q$ is the input size of nonlinear encodings,$m_A$ is the minimized block size of linear encodings, and $L=lcm(m_A,m_Q)$. As a result, a white-box implementation in the Chow et al.'s framework has complexity at most $O\(min\{(2^{2m}/m)n^{m+4},\;n{\log}n{\cdot}2^{n/2}\}\)$ which is much less than $2^n$. To overcome this, we introduce an idea that obfuscates two advanced encryption standard (AES)-128 ciphers at once with input/output encoding on 256 bits. To reduce storage, we use a sparse unsplit input encoding. As a result, our white-box AES implementation has up to 110-bit security against our toolbox, close to that of the original cipher. More generally, we may consider a white-box implementation of the t parallel encryption of AES to increase security.

An Efficient Public Trace and Revoke Scheme Using Augmented Broadcast Encryption Scheme (ABE 스킴을 활용한 효율적인 공모자 추적 및 제외 스킴)

  • Lee, MoonShik;Lee, Juhee;Hong, JeoungDae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.1
    • /
    • pp.17-30
    • /
    • 2016
  • In this paper, we propose an efficient public key trace and revoke scheme. An trace and revoke scheme is a broadcast encryption scheme which has a tracing and revocation algorithm. It would maintain security of the scheme to revoke pirate keys which are colluded by malicious users. In addition, property of revocation can be applied to various circumstances because it can help cipher text delivered to certain users who are supposed to. In this paper, we would change the scheme[Augmented broadcast encryption scheme] based on the bilinear groups of the composite order into that of prime order and we can improve the size of public key, secret key, ciphertext considerably. Furthermore, we define property of revocation precisely, so we can obtain the result that the scheme with limited revocation can be expanded to have a full revocation. This paper can be easily applied to the organization such as government, military, which has a hierarchical structure.

FRS-OCC: Face Recognition System for Surveillance Based on Occlusion Invariant Technique

  • Abbas, Qaisar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.288-296
    • /
    • 2021
  • Automated face recognition in a runtime environment is gaining more and more important in the fields of surveillance and urban security. This is a difficult task keeping in mind the constantly volatile image landscape with varying features and attributes. For a system to be beneficial in industrial settings, it is pertinent that its efficiency isn't compromised when running on roads, intersections, and busy streets. However, recognition in such uncontrolled circumstances is a major problem in real-life applications. In this paper, the main problem of face recognition in which full face is not visible (Occlusion). This is a common occurrence as any person can change his features by wearing a scarf, sunglass or by merely growing a mustache or beard. Such types of discrepancies in facial appearance are frequently stumbled upon in an uncontrolled circumstance and possibly will be a reason to the security systems which are based upon face recognition. These types of variations are very common in a real-life environment. It has been analyzed that it has been studied less in literature but now researchers have a major focus on this type of variation. Existing state-of-the-art techniques suffer from several limitations. Most significant amongst them are low level of usability and poor response time in case of any calamity. In this paper, an improved face recognition system is developed to solve the problem of occlusion known as FRS-OCC. To build the FRS-OCC system, the color and texture features are used and then an incremental learning algorithm (Learn++) to select more informative features. Afterward, the trained stack-based autoencoder (SAE) deep learning algorithm is used to recognize a human face. Overall, the FRS-OCC system is used to introduce such algorithms which enhance the response time to guarantee a benchmark quality of service in any situation. To test and evaluate the performance of the proposed FRS-OCC system, the AR face dataset is utilized. On average, the FRS-OCC system is outperformed and achieved SE of 98.82%, SP of 98.49%, AC of 98.76% and AUC of 0.9995 compared to other state-of-the-art methods. The obtained results indicate that the FRS-OCC system can be used in any surveillance application.

Recovery-Key Attacks against TMN-family Framework for Mobile Wireless Networks

  • Phuc, Tran Song Dat;Shin, Yong-Hyeon;Lee, Changhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2148-2167
    • /
    • 2021
  • The proliferation of the Internet of Things (IoT) technologies and applications, especially the rapid rise in the use of mobile devices, from individuals to organizations, has led to the fundamental role of secure wireless networks in all aspects of services that presented with many opportunities and challenges. To ensure the CIA (confidentiality, integrity and accessibility) security model of the networks security and high efficiency of performance results in various resource-constrained applications and environments of the IoT platform, DDO-(data-driven operation) based constructions have been introduced as a primitive design that meet the demand of high speed encryption systems. Among of them, the TMN-family ciphers which were proposed by Tuan P.M., Do Thi B., etc., in 2016, are entirely suitable approaches for various communication applications of wireless mobile networks (WMNs) and advanced wireless sensor networks (WSNs) with high flexibility, applicability and mobility shown in two different algorithm selections, TMN64 and TMN128. The two ciphers provide strong security against known cryptanalysis, such as linear attacks and differential attacks. In this study, we demonstrate new probability results on the security of the two TMN construction versions - TMN64 and TMN128, by proposing efficient related-key recovery attacks. The high probability characteristics (DCs) are constructed under the related-key differential properties on a full number of function rounds of TMN64 and TMN128, as 10-rounds and 12-rounds, respectively. Hence, the amplified boomerang attacks can be applied to break these two ciphers with appropriate complexity of data and time consumptions. The work is expected to be extended and improved with the latest BCT technique for better cryptanalytic results in further research.

Prohibiting internal data leakage to mass storage device in mobile device (모바일 단말에서 외부 저장 매체로의 불법 데이터 유출 방지 기법)

  • Chung, Bo-Heung;Kim, Jung-Nyu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.1
    • /
    • pp.125-133
    • /
    • 2011
  • According to proliferation of mobile devices, security threats have been continuously increased such as illegal or unintentional file transmission of important data to an external mass-storage device. Therefore, we propose a protection method to prohibit an illegal outflow to this device and implement this method. This method extracts signatures from random locations of important file and uses them to detect and block illegal file transmission. To get signatures, a target file is divided by extracting window size and more than one signatures are extracted in this area. To effective signature sampling, various extraction ways such as full, binomial distribution-based and dynamic sampling are implemented and evaluated. The proposed method has some advantages. The one is that an attacker cannot easily predict the signature and its extraction location. The other is that it doesn't need to modify original data to protect it. With the help of these advantages, we can say that this method can increase efficiency of easy-to-use and it is a proper way leakage prevention in a mobile device.